skip to main content


Search for: All records

Award ID contains: 1826777

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Wild populations must continuously respond to environmental changes or they risk extinction. Those responses can be measured as phenotypic rates of change, which can allow us to predict contemporary adaptive responses, some of which are evolutionary. About two decades ago, a database of phenotypic rates of change in wild populations was compiled. Since then, researchers have used (and expanded) this database to examine phenotypic responses to specific types of human disturbance. Here, we update the database by adding 5675 new estimates of phenotypic change. Using this newer version of the data base, now containing 7338 estimates of phenotypic change, we revisit the conclusions of four published articles. We then synthesize the expanded database to compare rates of change across different types of human disturbance. Analyses of this expanded database suggest that: (i) a small absolute difference in rates of change exists between human disturbed and natural populations, (ii) harvesting by humans results in higher rates of change than other types of disturbance, (iii) introduced populations have increased rates of change, and (iv) body size does not increase through time. Thus, findings from earlier analyses have largely held‐up in analyses of our new database that encompass a much larger breadth of species, traits, and human disturbances. Lastly, we use new analyses to explore how various types of human disturbances affect rates of phenotypic change, and we call for this database to serve as a steppingstone for further analyses to understand patterns of contemporary phenotypic change.

     
    more » « less
  2. null (Ed.)
    Abstract Background Exploring hybrid zone dynamics at different spatial scales allows for better understanding of local factors that influence hybrid zone structure. In this study, we tested hypotheses about drivers of introgression at two spatial scales within the Saltmarsh Sparrow ( Ammospiza caudacuta ) and Nelson’s Sparrow ( A. nelsoni ) hybrid zone. Specifically, we evaluated the influence of neutral demographic processes (relative species abundance), natural selection (exogenous environmental factors and genetic incompatibilities), and sexual selection (assortative mating) in this mosaic hybrid zone. By intensively sampling adults (n = 218) and chicks (n = 326) at two geographically proximate locations in the center of the hybrid zone, we determined patterns of introgression on a fine scale across sites of differing habitat. We made broadscale comparisons of patterns from the center with those of prior studies in the southern edge of the hybrid zone. Results A panel of fixed SNPs (135) identified from ddRAD sequencing was used to calculate a hybrid index and determine genotypic composition/admixture level of the populations. Another panel of polymorphic SNPs (589) was used to assign paternity and reconstruct mating pairs to test for sexual selection. On a broad-scale, patterns of introgression were not explained by random mating within marshes. We found high rates of back-crossing and similarly low rates of recent-generation (F1/F2) hybrids in the center and south of the zone. Offspring genotypic proportions did not meet those expected from random mating within the parental genotypic distribution. Additionally, we observed half as many F1/F2 hybrid female adults than nestlings, while respective male groups showed no difference, in support of Haldane’s Rule. The observed proportion of interspecific mating was lower than expected when accounting for mate availability, indicating assortative mating was limiting widespread hybridization. On a fine spatial scale, we found variation in the relative influence of neutral and selective forces between inland and coastal habitats, with the smaller, inland marsh influenced primarily by neutral demographic processes, and the expansive, coastal marsh experiencing higher selective pressures in the form of natural (exogenous and endogenous) and sexual selection. Conclusions Multiple drivers of introgression, including neutral and selective pressures (exogenous, endogenous, and sexual selection), are structuring this hybrid zone, and their relative influence is site and context-dependent. 
    more » « less
  3. null (Ed.)
  4. Abstract Humans are dominant global drivers of ecological and evolutionary change, rearranging ecosystems and natural selection. In the present article, we show increasing evidence that human activity also plays a disproportionate role in shaping the eco-evolutionary potential of systems—the likelihood of ecological change generating evolutionary change and vice versa. We suggest that the net outcome of human influences on trait change, ecology, and the feedback loops that link them will often (but not always) be to increase eco-evolutionary potential, with important consequences for stability and resilience of populations, communities, and ecosystems. We also integrate existing ecological and evolutionary metrics to predict and manage the eco-evolutionary dynamics of human-affected systems. To support this framework, we use a simple eco–evo feedback model to show that factors affecting eco-evolutionary potential are major determinants of eco-evolutionary dynamics. Our framework suggests that proper management of anthropogenic effects requires a science of human effects on eco-evolutionary potential. 
    more » « less
  5. null (Ed.)
  6. Ribas, Camila (Ed.)