Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A significant number and range of challenges besetting sustainability can be traced to the actions and interactions of multiple autonomous agents (people mostly) and the entities they create (e.g., institutions, policies, social network) in the corresponding social-environmental systems (SES). To address these challenges, we need to understand decisions made and actions taken by agents, the outcomes of their actions, including the feedbacks on the corresponding agents and environment. The science of complex adaptive systems—CAS science—has a significant potential to handle such challenges. We address the advantages of CAS science for sustainability by identifying the key elements and challenges in sustainability science, the generic features of CAS, and the key advances and challenges in modeling CAS. Artificial intelligence and data science combined with agent-based modeling promise to improve understanding of agents’ behaviors, detect SES structures, and formulate SES mechanisms.more » « lessFree, publicly-accessible full text available November 1, 2025
-
Concurrently implemented green initiatives to combat global environmental crises may be curtailed or even sacrificed given the ongoing global economic contraction. We collected empirical data and information about green initiatives from 15 sites or countries worldwide. We systematically explored how specific policy, intended behaviors, and gains of given green initiative may interact with those of other green initiatives concurrently implemented in the same geographic area or involving the same recipients. Surprisingly, we found that spillover effects were very divergent: one initiative could reduce the gain of another by 22 % ~ 100 %, representing alarming losses, while in other instances, substantial co-benefits could arise as one initiative can increase the gain of another by 9 % ~ 310 %. Leveraging these effects will help countries keep green initiatives with significant co-benefits but stop initiatives with substantial spillover losses in the face of widespread budget cuts, better meeting the United Nations’ sustainable development goals.more » « lessFree, publicly-accessible full text available March 1, 2025
-
Summary China’s Belt and Road Initiative (BRI), designed to build critical infrastructure and coordinate economic growth, is the most significant development initiative in modern history. The BRI has a documented vision for sustainability, including environmental impact assessments and responsibility tenets. Despite this, a growing body of literature has found adverse effects of BRI projects on protected land and species. To understand corporate responsibility and regulations for companies participating in the BRI, we gathered information on 260 BRI companies using the Refinitiv Eikon BRI Connect database and the China Global Investment Tracker. The results revealed a significant gap in corporate responsibility reporting for biodiversity impacts, environmental restoration, environmental project financing and the United Nations’ Sustainable Development Goals (SDG) 14 ‘Life below Water’ and 15 ‘Life on Land’. The modest fraction of companies that we found to report biodiversity accountability highlights the need to restructure and incentivize the reporting of environmental and biodiversity risks. The current evidence of limited adherence to responsibility measures highlights a clear opportunity to align BRI development with the BRI’s vision for sustainability, and to strengthen links for policy engagement within Chinese regulatory frameworks and international obligations at the United Nations within its SDG framework.more » « less
-
Although research on wildlife species across taxa has shown that males and females may differentially select habitat, sex-specific habitat suitability models for endangered species are uncommon. We developed sex-specific models for Bengal tigers (Panthera tigris) based on camera trapping data collected from 20 January to 22 March 2010 within Chitwan National Park, Nepal, and its buffer zone. We compared these to a sex-indiscriminate habitat suitability model to assess the benefits of a sex-specific approach to habitat suitability modeling. Our sex-specific models produced more informative and detailed habitat suitability maps and highlighted vital differences in the spatial distribution of suitable habitats for males and females, specific associations with different vegetation types, and habitat use near human settlements. Improving and refining habitat models for this and other critically endangered species provides the necessary information to meet established conservation goals and population recovery targets.more » « less
-
Detecting small objects (e.g., manhole covers, license plates, and roadside milestones) in urban images is a long-standing challenge mainly due to the scale of small object and background clutter. Although convolution neural network (CNN)-based methods have made significant progress and achieved impressive results in generic object detection, the problem of small object detection remains unsolved. To address this challenge, in this study we developed an end-to-end network architecture that has three significant characteristics compared to previous works. First, we designed a backbone network module, namely Reduced Downsampling Network (RD-Net), to extract informative feature representations with high spatial resolutions and preserve local information for small objects. Second, we introduced an Adjustable Sample Selection (ADSS) module which frees the Intersection-over-Union (IoU) threshold hyperparameters and defines positive and negative training samples based on statistical characteristics between generated anchors and ground reference bounding boxes. Third, we incorporated the generalized Intersection-over-Union (GIoU) loss for bounding box regression, which efficiently bridges the gap between distance-based optimization loss and area-based evaluation metrics. We demonstrated the effectiveness of our method by performing extensive experiments on the public Urban Element Detection (UED) dataset acquired by Mobile Mapping Systems (MMS). The Average Precision (AP) of the proposed method was 81.71%, representing an improvement of 1.2% compared with the popular detection framework Faster R-CNN.more » « less