skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1827020

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Nanoparticles and nanofibers are widely used as components of polymer electrolytes for membranes in fuel cells, and many surface modification methods are reported. However, some fabrication techniques are complicated, and it is necessary to develop a simplified and precise control method. Herein, a facile fabrication method is reported for core–shell nanoparticles hierarchically coated with polymeric ionic liquids (PIL) and hydrophobic polymers as a material for polymer electrolytes. A hierarchical polymer layer on the surface of the SiO2nanoparticles is easily constructed by repeating the facile polymer‐coating technique based on precipitation polymerization several times. The highest proton conductivity of the core–shell nanoparticles is 1.3 × 10−2 S cm−1at 80 °C and 95% relative humidity. Although the hydrophobic polymers coated as a protective layer reduce the proton conductivity, the formation of the PIL enhances the proton conductivity in various temperature and humidity environments. Therefore, the proposed method enables the facile fabrication of polymer layers with multiple functions, such as a proton‐conductive PIL layer and hydrophobic polymer layers as protective layers on the surface of the nanoparticles. Furthermore, they are expected to be applied to energy supply and gas separation, including polyelectrolytes, for the realization of a sustainable society. 
    more » « less