skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1827134

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Nanoscience and nanotechnology play a significant role in every field of our society. Nanotechnology is the backbone of high-tech industries and widely used in consumer products and industrial applications. Therefore, it is essential to highlight the importance of nanoscience and nanotechnology to undergraduate students and explain the science behind nanotechnology. For this purpose, an upper-level elective mechanical engineering course, Nanoscale Science and Engineering, is designed and added to the mechanical and mechatronic engineering curriculum. This course introduces students to the interdisciplinary field of nanoscience and engineering including the areas of engineering, materials science, chemistry, and physics. The topics covered include advanced materials, synthesis, and modification of nanomaterials, properties of nanomaterials, materials characterization, nanofabrication methods, and applications. It has three modules, which are formal lectures, guest speakers, and projects. Projects will help students learn to conduct a literature search, critically review scientific articles, and learn advanced materials characterization techniques on a given topic. They will further have a chance to propose their own ideas for potential applications and asked to give a detailed methodology to execute the project. In this work-in-progress study, we present the impact of the Nanoscale Science and Engineering course on undergraduate mechanical and mechatronic engineering students. Students were invited to complete a survey at the beginning of the semester, which will be also given to the students, at the end of the semester. The survey consists of 15 questions, which are aimed to analyze the pre-existing knowledge of students in nanotechnology-related topics and their interest level to increase their knowledge and advance their career in a nanotechnology-related field. In order to assess the impact of the course on students, the results of the survey will be compared. Student demographics will be included in the results. Possible changes in course content to improve student engagement in nanotechnology will be discussed. The purpose of this course is to introduce undergraduate engineering students to nanotechnology. The inclusion of Nanoscale Science and Engineering course to the undergraduate engineering curriculum has a significant role in the advancement of nanotechnology. Students graduating with a solid understanding of broad applications of nanotechnology and advanced material fabrication and characterization techniques will have a focused start in their graduate research and education or faster adaptation to nanotechnology-related industrial job positions. 
    more » « less
  2. null (Ed.)
    This paper focuses on discussing the efforts made to engage students in multi-disciplinary research and integrate teaching and research in the areas of FTIR Spectro- microscopy and image processing and analysis. The author (PI) and co-PIs acquired a Fourier Transform Infrared (FTIR) Spectroscopic Imaging equipment through the National Science Foundation- Major Research Instrumentation (NSF- MRI) grant (#1827134). This project aims to use the equipment to conduct undergraduate and graduate research projects and teach undergraduate and graduate classes. The NSF awarded the California State University Chico (CSU Chico) $175,305 to acquire an FTIR spectrometer and microscope, which are important tools for chemical characterization of samples with infrared active molecules. FTIR Spectroscopic Imaging System especially provides accurate chemical images that reveal the variations in images’ pixels which are mappings of constituent materials of samples rather than a single visible image with slight variations. By employing this equipment in research and the Image Processing course, students can learn how to collect, process and analyze the imaging data of samples and the corresponding spectral data. The students not only will learn how to process a single chemical image, but also will work with the data cubes to consider the pixel intensities along the IR spectrum, experience working with big data, hone the skills to design experiments, analyze larger data sets, develop pre- and post-image processing techniques, and apply and refine math and programming skills. Image processing course conventionally is based on math, digital signal and systems, and requires programming skills such as Matlab, C++, and Python. along with the mentioned knowledge. Additionally, the research conducted by this equipment promotes collaboration between engineering major students and science major students. In this paper, the author will explain how collecting data through running experiments with the FTIR Spectroscopic Imaging equipment helps students visualize theory and relate it to real world problems. This paper also discusses the results of engaging undergraduate students from various majors in research. Moreover, it will discuss some of the projects that were conducted by undergraduate students and their learning outcomes. The objective of the research projects was material characterization towards contribution to health by employing FTIR Spectroscopic Imaging System. 
    more » « less