Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Investigating the foraging ecology and trophic interactions of threatened marine predators is critical to assess how community changes due to anthropogenic activities will affect predator–prey relationships. Two species of threatened coastal dolphins, the Indian Ocean humpback dolphin (Sousa plumbea) and the Indo‐Pacific bottlenose dolphin (Tursiops aduncus), occur off Nosy Be, north‐western Madagascar, in a region where artisanal fisheries are ecologically and socioeconomically important. Here, we investigated the feeding ecology of these two coastal dolphins and their trophic interactions with four other odontocetes using bulk stable carbon and nitrogen isotope analysis (δ13C andδ15N). Humpback dolphins had significantly enrichedδ13C values, reflecting a preference for coastal/benthic prey. Bottlenose dolphins had a broader isotopic niche, suggesting a broader range of prey and foraging habitats. The overlap in isotopic niche of all six odontocete species was limited, indicating partitioning of resources and habitats. Bayesian mass‐balance isotopic mixing models revealed that humpback dolphins forage primarily on reef planktivores (38.9%) and inner reef mesopredators (20.5%), while bottlenose dolphins had a broader diet, including reef‐associated (15%–32%) and pelagic prey (12%–23%). Our study reveals that the reliance on inshore prey by humpback dolphins may place them in competition with coastal fisheries.more » « less
-
Abstract Madagascar's lemurs are threatened by forest loss, fragmentation, and degradation. Many species use flexible behaviors to survive in degraded habitat, but their ability to persist in very small areas may be limited. Insular lemurs, like those found on Nosy Be, an island off the northwestern coast of Madagascar, are at heightened risk of sudden population declines and extirpation. Nosy Be is home to two Critically Endangered species—the endemic Nosy Be sportive lemur (Lepilemur tymerlachsoni) and Claire's mouse lemur (Microcebus mamiratra)—as well as the Endangered black lemur (Eulemur macaco). Most of the remaining forest on Nosy Be is protected by the 862‐ha Lokobe National Park. To document how Nosy Be lemurs use their restricted habitat, we conducted vegetation and reconnaissance surveys on 53 transects in and around Lokobe. We collected data on tree size, canopy cover, understory visibility, and elevation for 248 lemur sightings. We used a spatially explicit, multi‐species occupancy model to investigate which forest‐structure variables are important to lemurs. Our results represent some of the first data on habitat use by insular lemurs. Black lemurs preferred significantly larger trees and areas with less dense understory. They also occurred significantly less outside of Lokobe National Park, even when accounting for sampling effort and geography. The distributions of the sportive and mouse lemurs were not related to the forest structure variables we documented, but they did negatively predict each other—perhaps because their habitat requirements differ. These results also underscore the importance of the national park to protecting the black lemur population on Nosy Be and raise questions about what factors do influence the distribution of Nosy Be's smaller lemurs. Close monitoring is needed to prevent these populations and the ecosystem services they provide from disappearing, as have other island lemurs.more » « less
-
Epibionts are organisms that utilize the exterior of other organisms as a living substratum. Many affiliate opportunistically with hosts of different species, but others specialize on particular hosts as obligate associates. We investigated a case of apparent host specificity between two barnacles that are epizoites of sea turtles and illuminate some ecological considerations that may shape their host relationships. The barnaclesChelonibia testudinariaandChelonibia caretta, though roughly similar in appearance, are separable by distinctions in morphology, genotype, and lifestyle. However, though each is known to colonize both green (Chelonia mydas) and hawksbill (Eretmochelys imbricata) sea turtles,C. testudinariais >5 times more common on greens, whileC. carettais >300 times more common on hawksbills. Two competing explanations for this asymmetry in barnacle incidence are either that the species’ larvae are spatially segregated in mutually exclusive host-encounter zones or their distributions overlap and the larvae behaviorally select their hosts from a common pool. We indirectly tested the latter by documenting the occurrence of adults of both barnacle species in two locations (SE Florida and Nose Be, Madagascar) where both turtle species co-mingle. For green and hawksbill turtles in both locations (Florida:n= 32 andn= 275, respectively; Madagascar:n= 32 andn= 125, respectively), we found thatC. testudinariaoccurred on green turtles only (percent occurrence – FL: 38.1%; MD: 6.3%), whereas the barnacleC. carettawas exclusively found on hawksbill turtles (FL: 82.2%; MD: 27.5%). These results support the hypothesis that the larvae of these barnacles differentially select host species from a shared supply. Physio-biochemical differences in host shell material, conspecific chemical cues, external microbial biofilms, and other surface signals may be salient factors in larval selectivity. Alternatively, barnacle presence may vary by host micro-environment. Dissimilarities in scute structure and shell growth between hawksbill and green turtles may promote critical differences in attachment modes observed between these barnacles. In understanding the co-evolution of barnacles and hosts it is key to consider the ecologies of both hosts and epibionts in interpreting associations of chance, choice, and dependence. Further studies are necessary to investigate the population status and settlement spectrum of barnacles inhabiting sea turtles.more » « less
An official website of the United States government
