skip to main content


Search for: All records

Award ID contains: 1827313

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Families of quasiracemic materials constructed from 3- and 4-substituted chiral diarylamide molecular frameworks were prepared, where the imposed functional group differences systematically varied from H to CF3–9 unique components for each isomeric framework. Cocrystallization from the melt via hot stage thermomicroscopy using all possible racemic and quasiracemic combinations probed the structural boundaries of quasiracemate formation. The crystal structures and lattice energies (differential scanning calorimetry and lattice energy calculations) for many of these systems showed that quasienantiomeric components organize with near inversion symmetry and lattice energetics closely resembling those found in the racemic counterparts. This study also compared the shape space of pairs of quasienantiomers using an in silico alignment-based method to approximate the differences in molecular shape and provide a diagnostic tool for quasiracemate prediction. Comparing these results to our recent report on related 2-substituted diarylamide quasiracemates shows that functional group position can have a marked effect on quasiracemic behavior and provide critical insight to a more complete shape space, essential for defining molecular recognition processes. 
    more » « less
  2. New additions to quasiracemic materials have been developed by cocrystallizing a ternary component – hydrogen oxalate – with pairs of amino acid quasienantiomers where at least one of the side-chain R groups contains a sulfur atom. Of the eight quasiracemates investigated, six exhibit crystal packing that drastically deviates from the expected centrosymmetric alignment present in the racemic counterparts and the extant database of quasiracemic materials. These structures were quantitatively assessed for conformational similarity (CCDC-Mercury structure overlay) and the degree of inversion symmetry (Avnir's Continuous Symmetry Measures) for each quasienantiomeric pair. Despite the variance in quasienantiomeric components, these structures exhibit a high degree of isostructurality where the principal components assemble by a complex blend of common N + –H⋯O and O–H⋯O − interactions. These charge-assisted hydrogen-bonded networks form thermodynamically favored crystal packing that promotes cocrystallization of a structurally diverse set of quasienantiomeric components. 
    more » « less
  3. Amino acid quasiracemates – generated from the assembly of pairs of chemically distinct amino acids of opposite handedness – continue to provide important opportunities to understand how self-assembly can be promoted despite using components with drastically different sizes and molecular shapes. Previous studies by Görbitz et al. and others cataloged 32 crystal structures of amino acid quasiracemates, with each showing the building blocks aligned with near inversion symmetry similar to their racemic counterparts. This investigation examined the impact of using a secondary coformer molecule, hydrogen oxalate, on the cocrystalline landscape of amino acid quasiracemates with hydrocarbon side chains. Eight racemic (4) and quasiracemic (4) hydrogen oxalate structures were generated. Crystal structures of these systems show the hydrogen oxalate moieties assembled into C(5) molecular columns by the construction of robust O–H⋯O − hydrogen bonds with the amino acid enantiomers and quasienantiomers linked to these column motifs using a complex blend of N + –H⋯O − , O–H⋯O − , and N + –H⋯OC contacts. The racemates and quasiracemates form similar packing motifs; however, due to the chemically non-identical nature of the quasiracemic components, the outcome is that the amino acids organize with near inversion symmetry. Both the conformational similarity ( χ RMS ) and degree of inversion symmetry ( C i ) of related pairs of quasienantiomeric components have been systematically assessed using readily available structural tools. This study shows how coformer molecules such as hydrogen oxalate can provide new and critical insight into the molecular recognition process of quasiracemic materials. 
    more » « less
  4. null (Ed.)
    Quasiracemates – materials consisting of pairs of near enantiomers – form crystalline motifs that mimic the inversion relationships observed for their racemic counterparts. Recent investigations from our group explored a family of chiral ( N -benzoyl)methylbenzylamines to understand the structural boundary of cocrystallization. This investigation extends these earlier studies to include naphthylamide quasiracemates, where the molecular framework is ∼20% larger by volume than the previous diarylamides. A family of naphthylamides was prepared where the pendant functional group differs incrementally in size ( i.e. , H to C 6 H 5 ) to give 55 possible unique pairs of racemic and quasiracemic combinations. Data collected from these materials using X-ray crystallography, thermal analysis methods and lattice energy calculations offer important insight into how a spatially larger naphthylamide molecular framework promotes greater structural variance of substituents during the pairwise assembly of quasienantiomers. 
    more » « less