Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)The ability to detect failures and anomalies are fundamental requirements for building reliable systems for computer vision applications, especially safety-critical applications of semantic segmentation, such as autonomous driving and medical image analysis. In this paper, we systematically study failure and anomaly detection for semantic segmentation and propose a unified framework, consisting of two modules, to address these two related problems. The first module is an image synthesis module, which generates a synthesized image from a segmentation layout map, and the second is a comparison module, which computes the difference between the synthesized image and the input image. We validate our framework on three challenging datasets and improve the state-of-the-arts by large margins, i.e., 6% AUPR-Error on Cityscapes, 7% Pearson correlation on pancreatic tumor segmentation in MSD and 20% AUPR on StreetHazards anomaly segmentatiomore » « less
-
null (Ed.)Patch-based attacks introduce a perceptible but localized change to the input that induces misclassification. A limitation of current patch-based black-box attacks is that they perform poorly for targeted attacks, and even for the less challenging non-targeted scenarios, they require a large number of queries. Our proposed PatchAttack is query efficient and can break models for both targeted and non-targeted attacks. PatchAttack induces misclassifications by superimposing small textured patches on the input image. We parametrize the appearance of these patches by a dictionary of class-specific textures. This texture dictionary is learned by clustering Gram matrices of feature activations from a VGG backbone. PatchAttack optimizes the position and texture parameters of each patch using reinforcement learning. Our experiments show that PatchAttack achieves > 99% success rate on ImageNet for a wide range of architectures, while only manipulating 3% of the image for non-targeted attacks and 10% on average for targeted attacks. Furthermore, we show that PatchAttack circumvents state-of-the-art adversarial defense methods successfully. Tmore » « less
-
null (Ed.)Sketch-based image retrieval (SBIR) is widely recognized as an important vision problem which implies a wide range of real-world applications. Recently, research interests arise in solving this problem under the more realistic and challenging setting of zero-shot learning. In this paper, we investigate this problem from the viewpoint of domain adaptation which we show is critical in improving feature embedding in the zero-shot scenario. Based on a framework which starts with a pre-trained model on ImageNet and finetunes it on the training set of SBIR benchmark, we advocate the importance of preserving previously acquired knowledge, e.g., the rich discriminative features learned from ImageNet, to improve the model’s transfer ability. For this purpose, we design an approach named Semantic-Aware Knowledge prEservation (SAKE), which fine-tunes the pretrained model in an economical way and leverages semantic information, e.g., inter-class relationship, to achieve the goal of knowledge preservation. Zero-shot experiments on two extended SBIR datasets, TU-Berlin and Sketchy, verify the superior performance of our approach. Extensive diagnostic experiments validate that knowledge preserved benefits SBIR in zero-shot settings, as a large fraction of the performance gain is from the more properly structured feature embedding for photo images.more » « less
An official website of the United States government

Full Text Available