skip to main content


Search for: All records

Award ID contains: 1827752

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The extent to which hand dominance may influence how each agent contributes to inter-personal coordination remains unknown. In the present study, right-handed human participants performed object balancing tasks either in dyadic conditions with each agent using one hand (left or right), or in bimanual conditions where each agent performed the task individually with both hands. We found that object load was shared between two hands more asymmetrically in dyadic than single-agent conditions. However, hand dominance did not influence how two hands shared the object load. In contrast, hand dominance was a major factor in modulating hand vertical movement speed. Furthermore, the magnitude of internal force produced by two hands against each other correlated with the synchrony between the two hands’ movement in dyads. This finding supports the important role of internal force in haptic communication. Importantly, both internal force and movement synchrony were affected by hand dominance of the paired participants. Overall, these results demonstrate, for the first time, that pairing of one dominant and one non-dominant hand may promote asymmetrical roles within a dyad during joint physical interactions. This appears to enable the agent using the dominant hand to actively maintain effective haptic communication and task performance. 
    more » « less
  2. null (Ed.)
    Abstract Successful object manipulation, such as preventing object roll, relies on the modulation of forces and centers of pressure (point of application of digits on each grasp surface) prior to lift onset to generate a compensatory torque. Whether or not generalization of learned manipulation can occur after adding or removing effectors is not known. We examined this by recruiting participants to perform lifts in unimanual and bimanual grasps and analyzed results before and after transfer. Our results show partial generalization of learned manipulation occurred when switching from a (1) unimanual to bimanual grasp regardless of object center of mass, and (2) bimanual to unimanual grasp when the center of mass was on the thumb side. Partial generalization was driven by the modulation of effectors’ center of pressure, in the appropriate direction but of insufficient magnitude, while load forces did not contribute to torque generation after transfer. In addition, we show that the combination of effector forces and centers of pressure in the generation of compensatory torque differ between unimanual and bimanual grasping. These findings highlight that (1) high-level representations of learned manipulation enable only partial learning transfer when adding or removing effectors, and (2) such partial generalization is mainly driven by modulation of effectors’ center of pressure. 
    more » « less
  3. null (Ed.)