skip to main content


Search for: All records

Award ID contains: 1828117

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Phosphinodiboranates (H 3 BPR 2 BH 3 − ) are a class of borohydrides that have merited a reputation as weakly coordinating anions, which is attributed in part to the dearth of coordination complexes known with transition metals, lanthanides, and actinides. We recently reported how K(H 3 BP t Bu 2 BH 3 ) exhibits sluggish salt elimination reactivity with f-metal halides in organic solvents such as Et 2 O and THF. Here we report how this reactivity appears to be further attenuated in solution when the t Bu groups attached to phosphorus are exchanged for R = Ph or H, and we describe how mechanochemistry was used to overcome limited solution reactivity with K(H 3 BPPh 2 BH 3 ). Grinding three equivalents of K(H 3 BPPh 2 BH 3 ) with UI 3 (THF) 4 or LnI 3 (Ln = Ce, Pr, Nd) allowed homoleptic complexes with the empirical formulas U(H 3 BPPh 2 BH 3 ) 3 (1), Ce(H 3 BPPh 2 BH 3 ) 3 (2), Pr(H 3 BPPh 2 BH 3 ) 3 (3), and Nd(H 3 BPPh 2 BH 3 ) 3 (4) to be prepared and subsequently crystallized in good yields (50–80%). Single-crystal XRD studies revealed that all four complexes exist as dimers or coordination polymers in the solid-state, whereas 1 H and 11 B NMR spectra showed that they exist as a mixture of monomers and dimers in solution. Treating 4 with THF breaks up the dimer to yield the monomeric complex Nd(H 3 BPPh 2 BH 3 ) 3 (THF) 3 (4-THF). XRD studies revealed that 4-THF has one chelating and two dangling H 3 BPPh 2 BH 3 − ligands bound to the metal to accommodate binding of THF. In contrast to the results with K(H 3 BPPh 2 BH 3 ), attempting the same mechanochemical reactions with Na(H 3 BPH 2 BH 3 ) containing the simplest phosphinodiboranate were unsuccessful; only the partial metathesis product U(H 3 BPH 2 BH 3 )I 2 (THF) 3 (5) was isolated in poor yields. Despite these limitations, our results offer new examples showing how mechanochemistry can be used to rapidly synthesize molecular coordination complexes that are otherwise difficult to prepare using more traditional solution methods. 
    more » « less
  2. null (Ed.)
    Photoirradiation of a binary cocrystal composed of two different cyclic dienes generates a highly-symmetric cubane-like tetraacid cage regioselectively and in quantitative yield. The cage forms by a double [2+2] photodimerization of one of the diene cocrystal components. The second diene while photostable in the cocrystal reacts in a double [2+2] photodimerization as a pure form quantitatively to form a tetramethyl cubane-like cage. The stereochemistry of the cage is structurally authenticated. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
    We describe a supramolecular synthesis of a ternary cocrystal involving resveratrol and 5-fluorouracil ( 5-fu ) with trans -bis(4-pyridyl)ethylene ( bpe ). We also have discovered a polymorph of a binary cocrystal involving 5- fu and bpe that originates from rare supramolecular isomerism. 
    more » « less
  5. null (Ed.)
    Abstract This Account describes work by our research group that highlights opportunities to utilize organoboron molecules to direct chemical reactivity in the organic solid state. Specifically, we convey a previously unexplored use of hydrogen bonding of boronic acids and boron coordination in boronic esters to achieve [2+2]-photocycloadditions in crystalline solids. Organoboron molecules act as templates or ‘shepherds’ to organize alkenes in a suitable geometry to undergo regio- and stereoselective [2+2]-photocycloadditions in quantitative yields. We also provide a selection of publications that served as an inspiration for our strategies and offer challenges and opportunities for future developments of boron in the field of materials and solid-state chemistry. 1 Introduction 1.1 Template Strategy for [2+2]-Photocycloadditions in the Solid State 2 Boronic Acids as Templates for [2+2]-Photocycloadditions in the Solid State 2.1 Supramolecular Catalysis of [2+2]-Photocycloadditions in the Solid State Using Boronic Acids 3 Boronic Esters as Templates for [2+2]-Photocycloadditions in the Solid State 3.1 Application of Photoproducts: Separation of Thiophene from Benzene through Crystallization 3.2 Crystal Reactivity of B←N-Bonded Adducts: The Case of Styryl­thiophenes 4 Conclusions and Perspectives 
    more » « less