- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Huang, Wentao (3)
-
Nimmo, Francis (3)
-
Zhou, Tinghong (3)
-
Bono, Richard K. (2)
-
Cottrell, Rory D. (2)
-
Ibañez-Mejia, Mauricio (2)
-
Smirnov, Aleksey V. (2)
-
Tarduno, John A. (2)
-
Ahrendt, Gabriel (1)
-
Blackman, Eric G (1)
-
Blackman, Eric G. (1)
-
Bleeker, Wouter (1)
-
Bono, Richard K (1)
-
Cottrell, Rory D (1)
-
Crummins, Ben (1)
-
Dal Olmo-Barbosa, Laércio (1)
-
Hamilton, Matt (1)
-
Ibanez-Mejia, Mauricio (1)
-
Kodama, Kenneth (1)
-
Kodama, Kenneth P (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Earth’s magnetic field was in a highly unusual state when macroscopic animals of the Ediacara Fauna diversified and thrived. Any connection between these events is tantalizing but unclear. Here, we present single crystal paleointensity data from 2054 and 591 Ma pyroxenites and gabbros that define a dramatic intensity decline, from a strong Proterozoic field like that of today, to an Ediacaran value 30 times weaker. The latter is the weakest time-averaged value known to date and together with other robust paleointensity estimates indicate that Ediacaran ultra-low field strengths lasted for at least 26 million years. This interval of ultra-weak magnetic fields overlaps temporally with atmospheric and oceanic oxygenation inferred from numerous geochemical proxies. This concurrence raises the question of whether enhanced H ion loss in a reduced magnetic field contributed to the oxygenation, ultimately allowing diversification of macroscopic and mobile animals of the Ediacara Fauna.more » « less
-
Zhou, Tinghong; Tarduno, John A.; Nimmo, Francis; Cottrell, Rory D.; Bono, Richard K.; Ibanez-Mejia, Mauricio; Huang, Wentao; Hamilton, Matt; Kodama, Kenneth; Smirnov, Aleksey V.; et al (, Nature Communications)Abstract Paleomagnetism can elucidate the origin of inner core structure by establishing when crystallization started. The salient signal is an ultralow field strength, associated with waning thermal energy to power the geodynamo from core-mantle heat flux, followed by a sharp intensity increase as new thermal and compositional sources of buoyancy become available once inner core nucleation (ICN) commences. Ultralow fields have been reported from Ediacaran (~565 Ma) rocks, but the transition to stronger strengths has been unclear. Herein, we present single crystal paleointensity results from early Cambrian (~532 Ma) anorthosites of Oklahoma. These yield a time-averaged dipole moment 5 times greater than that of the Ediacaran Period. This rapid renewal of the field, together with data defining ultralow strengths, constrains ICN to ~550 Ma. Thermal modeling using this onset age suggests the inner core had grown to 50% of its current radius, where seismic anisotropy changes, by ~450 Ma. We propose the seismic anisotropy of the outermost inner core reflects development of a global spherical harmonic degree-2 deep mantle structure at this time that has persisted to the present day. The imprint of an older degree-1 pattern is preserved in the innermost inner core.more » « less
-
Zhou, Tinghong; Ibañez-Mejia, Mauricio; Bono, Richard K; Cottrell, Rory D; Bleeker, Wouter; Kodama, Kenneth P; Huang, Wentao; Blackman, Eric G; Nimmo, Francis; Smirnov, Aleksey V; et al (, Earth and Planetary Science Letters)
An official website of the United States government
