skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1829245

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Electronic and excitonic states in anInSbstrongly flattened ellipsoidal quantum dot (QD) with complicated dispersion law are theoretically investigated within the framework of the geometric adiabatic approximation in the strong, intermediate, and weak quantum confinement regimes. For the lower levels of the spectrum, the square root dependence of energy on QD sizes is revealed in the case of Kane’s dispersion law. The obtained results are compared to the case of a parabolic (standard) dispersion law of charge carriers. The possibility of the accidental exciton instability is revealed for the intermediate quantum confinement regime. For the weak quantum confinement regime, the motion of the exciton's center-of-gravity is quantized, which leads to the appearance of additional Coulomb-like sub-levels. It is revealed that in the case of the Kane dispersion law, the Coulomb levels shift into the depth of the forbidden band gap, moving away from the quantum confined level, whereas in the case of the parabolic dispersion law, the opposite picture is observed. The corresponding selection rules of quantum transitions for the interband absorption of light are obtained. New selection rules of quantum transitions between levels conditioned by 2D exciton center of mass vertical motion quantization in a QD are revealed. The absorption threshold behavior characteristics depending on the QDs geometrical sizes are also revealed. 
    more » « less
  2. Abstract Herein, we report the comparison of two different mixing methods for reductive dechlorination of gamma‐hexachlorocyclohexane (γ‐HCH), aldrin, and p, p’‐dichlorodiphenyl‐trichloroethane (p, p’‐DDT), using iron/palladium (Fe/Pd) bimetallic nanoparticles. A noticeable enhancement of the reaction rate was found when the reductive dechlorination reaction was carried out in an ultrasound bath as compared with a platform shaker. These enhancements could be attributed to (a) the continuous cleaning and chemical activation of the surfaces of nanoscale Fe/Pd bimetallic nanoparticles by the combined chemical and physical effects of acoustic cavitation; and (b) the accelerated mass transport rates of targetPOPs to the surfaces of the Fe/Pd nanoparticles. Finally, the degradation intermediates and final products were determined by gas chromatography/mass spectrometry (GC/MS) analysis and the plausible degradation pathways for γ‐HCH, aldrin, and p, p’‐DDTby Fe/Pd bimetallic nanoparticles were proposed. Practitioner pointsExposure to POPs is a resilient global environmental and health issue.Fe/Pd bimetallic nanoparticles demonstrated > 90 % removal of POPs in the first 30 minutes of the reaction via ultrasonic mixing.GC‐MS analyses provided verification of POPs degradation intermediates and final products. 
    more » « less
  3. Abstract Rechargeable sodium-ion batteries are receiving intense interest as a promising alternative to lithium-ion batteries, however, the absence of high-performance anode materials limits their further commercialization. Here we prepare cobalt-doped tin disulfide/reduced graphene oxide nanocomposites via a microwave-assisted hydrothermal approach. These nanocomposites maintain a capacity of 636.2 mAh g−1after 120 cycles under a current density of 50 mA g−1, and display a capacity of 328.3 mA h g−1after 1500 cycles under a current density of 2 A g−1. The quantitative capacitive analysis demonstrates that the electrochemical performance of the nanocomposite originates from the combined effects of cobalt and sulfur doping, resulting in the enhanced pseudocapacitive contribution (52.8 to 89.8% at 1 mV s−1) of tin disulfide. This work provides insight into tuning the structure of layered transition metal dichalcogenides via heteroatom doping to develop high-performance anode materials for sodium-ion batteries. 
    more » « less
  4. Abstract Titanium dioxide is a photocatalyst, known not only for its ability to oxidize organic contaminants, but also for its antimicrobial properties. In this article, significant enhancement of the antimicrobial activity of TiO2(up to 32 times) was demonstrated after its activation by ball milling. The antimicrobial activity was analyzed for one fungal and 13 bacterial ATCC strains using the microdilution method and recording the minimum inhibitory concentration (MIC) values. In order to further investigate the correlation between the mechanical activation of TiO2and its antimicrobial activity, the structure, morphology and phase composition of the material were studied by means of Electron Microscopy, X‐ray diffraction and nitrogen adsorption‐desorption measurements. UV‐Vis diffuse reflectance spectra were recorded and the Kubelka‐Munk function was applied to convert reflectance into the equivalent band gap energy (Eg) and, consequently, to investigate changes in theEgvalue. X‐ray photoelectron spectroscopy was used to analyze the influence of mechanical activation on the Ti 2p and O 1s spectra. The presented results are expected to enable the development of more sustainable and effective advanced TiO2‐based materials with antimicrobial properties that could be used in numerous green technology applications. 
    more » « less
  5. BaTiO 3 (BTO) is considered the most commonly used ceramic material in multilayer ceramic capacitors due to its desirable dielectric properties. Considering that the miniaturization of electronic devices represents an expanding field of research, modification of BTO has been performed to increase dielectric constant and DC bias characteristic/sensitivity. This research presents the effect of N 2 and air atmospheres on morphological and dielectric properties of BTO nanoparticles modified with organometallic salt at sintering temperatures of [Formula: see text]C, [Formula: see text]C, [Formula: see text]C, and [Formula: see text]C. Measured dielectric constants were up to 35,000, with achieved very high values in both atmospheres. Field emission scanning electron microscopy (FESEM) was used for morphological characterization, revealing a porous structure in all the samples. The software image analysis of FESEM images showed a connection between particle and pore size distribution, as well as porosity. Based on the data from the image analysis, the prediction of dielectric properties in relation to morphology indicated that yttrium-based organometallic salt reduced oxygen vacancy generation in N 2 atmosphere. DC bias sensitivity measurements showed that samples with higher dielectric constant had more pronounced sensitivity to voltage change, but most of the samples were stable up to 100 V, making our modified BTO a promising candidate for capacitors. 
    more » « less
  6. Advanced research frontiers are extended from biophysics relations on the Earth upto the discovering any type of alive matter within the whole space. Microorganisms’ motion within the molecular biology processes integrates variety of microorgnisms functions. In continuation of our Brownian motion phenomena research, we consistently build molecular-microorganisms structures hierarchy. We recognize everywhere biomimetic similarities between the particles in alive and nonalive matter. The research data are based on real experiments, without external energy impulses. So, we develop the analysis, inspired by fractal nature Brownian motion, as recognized joint parameter between particles in alive and nonalive biophysical systems. This is also in line with advance trends in hybrid submicroelectronic integrations. The important innovation in this paper is that we introduced approximation of trajectory and error calculations, using discrete mean square approximation, what cumulatively provide much more precise biophysical systems parameters. By this paper, we continue to generate new knowledge in direction to get complex relations between the particles clusters in biophysical systems condensed matter. 
    more » « less
  7. Forensic photography, also referred to as crime scene photography, is an activity that records the initial appearance of the crime scene and physical evidence in order to provide a permanent record for the court. Nowadays, we cannot imagine a crime scene investigation without photographic evidence. Crime or accident scene photographs can often be reanalyzed in cold cases or when the images need to be enlarged to show critical details. Fractals are rough or fragmented geometric shapes that can be subdivided into parts, each of which is a reduced copy of the whole. Fractal dimension (FD) is an important fractal geometry feature. There are many applications of fractals in various forensic fields, including image processing, image analysis, texture segmentation, shape classification, and identifying the image features such as roughness and smoothness of an image. Fractal analysis is applicable in forensic archeology and paleontology, as well. The damaged image can be reviewed, analyzed, and reconstructed by fractal nature analysis. 
    more » « less