skip to main content


Search for: All records

Award ID contains: 1829885

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The sinking of carbon fixed via net primary production (NPP) into the ocean interior is an important part of marine biogeochemical cycles. NPP measurements follow a log‐normal probability distribution, meaning NPP variations can be simply described by two parameters despite NPP's complexity. By analyzing a global database of open ocean particle fluxes, we show that this log‐normal probability distribution propagates into the variations of near‐seafloor fluxes of particulate organic carbon (POC), calcium carbonate, and opal. Deep‐sea particle fluxes at subtropical and temperate time‐series sites follow the same log‐normal probability distribution, strongly suggesting the log‐normal description is robust and applies on multiple scales. This log‐normality implies that 29% of the highest measurements are responsible for 71% of the total near‐seafloor POC flux. We discuss possible causes for the dampening of variability from NPP to deep‐sea POC flux, and present an updated relationship predicting POC flux from mineral flux and depth.

     
    more » « less
  2. Abstract

    Tropical cyclones (hurricanes) generate intense surface ocean cooling and vertical mixing resulting in nutrient upwelling into the photic zone and episodic phytoplankton blooms. However, their influence on the deep ocean remains unknown. Here we present evidence that hurricanes also impact the ocean's biological pump by enhancing export of labile organic material to the deep ocean. In October 2016, Category 3 Hurricane Nicole passed over the Bermuda Time Series site in the oligotrophic NW Atlantic Ocean. Following Nicole's passage, particulate fluxes of lipids diagnostic of fresh phytodetritus, zooplankton, and microbial biomass increased by 30–300% at 1,500 m depth and 30–800% at 3,200 m depth. Mesopelagic suspended particles following Nicole were also enriched in phytodetrital material and in zooplankton and bacteria lipids, indicating particle disaggregation and a deepwater ecosystem response. Predicted climate‐induced increases in hurricane frequency and/or intensity may significantly alter ocean biogeochemical cycles by increasing the strength of the biological pump.

     
    more » « less