- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Llewellyn Smith, Stefan G. (2)
-
Christopher, T.W. (1)
-
Christopher, Todd W. (1)
-
Le Bars, M. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Linear and nonlinear stability analyses are performed to determine critical Rayleigh numbers ( $${Ra}_{cr}$$ ) for a Rayleigh–Bénard convection configuration with an imposed bottom boundary heat flux that varies harmonically in time with zero mean. The $${Ra}_{cr}$$ value depends on the non-dimensional frequency $$\omega$$ of the boundary heat-flux modulation. Floquet theory is used to find $${Ra}_{cr}$$ for linear stability, and the energy method is used to find $${Ra}_{cr}$$ for two different types of nonlinear stability: strong and asymptotic. The most unstable linear mode alternates between synchronous and subharmonic frequencies at low $$\omega$$ , with only the latter at large $$\omega$$ . For a given frequency, the linear stability $${Ra}_{cr}$$ is generally higher than the nonlinear stability $${Ra}_{cr}$$ , as expected. For large $$\omega$$ , $${Ra}_{cr} \omega ^{-2}$$ approaches an $O(10)$ constant for linear stability but zero for nonlinear stability. Hence the domain for subcritical instability becomes increasingly large with increasing $$\omega$$ . The same conclusion is reached for decreasing Prandtl number. Changing temperature and/or velocity boundary conditions at the modulated or non-modulated plate leads to the same conclusions. These stability results are confirmed by selected direct numerical simulations of the initial value problem.more » « less
-
Christopher, Todd W.; Llewellyn Smith, Stefan G. (, Physical Review Fluids)null (Ed.)
An official website of the United States government
