skip to main content


Search for: All records

Award ID contains: 1829999

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Sugar is the second largest agro-based industry in India and has a major influence on the country’s water, food, and energy security. In this paper, we use a nexus approach to assess India’s interconnected water-food-energy challenges, with a specific focus on the political economy of the sugar industry in Maharashtra, one of the country’s largest sugar producing states. Our work underscores three points. First, the governmental support of the sugar industry is likely to persist because policymakers are intricately tied to that industry. Entrenched political interests have continued policies that incentivize sugar production. As surplus sugar has been produced, the government introduced additional policies to reduce this excess and thereby protect the sugar industry. Second, although the sugar economy is important to India, sugar policies have had detrimental effects on both water and nutrition. Long-standing government support for sugarcane pricing and sales has expanded water-intensive sugarcane irrigation in low-rainfall areas in Maharashtra, which has reduced the state’s freshwater resources and restricted irrigation of more nutritious crops. Despite its poor nutritional value, empty-calorie sugar has been subsidized through the public distribution system. Third, the Indian government is now promoting sugarcane-based ethanol production. This policy has the benefit of providing greater energy security and creating a new demand for surplus sugar in the Indian market. Our analysis shows that a national biofuel policy promoting the production of ethanol from sugarcane juice versus directly from molasses may help reduce subsidized sugar for human consumption without necessarily expanding water and land use for additional production of sugarcane.

     
    more » « less
  2. Abstract Scarce and unreliable urban water supply in many countries has caused municipal users to rely on transfers from rural wells via unregulated markets. Assessments of this pervasive water re-allocation institution and its impacts on aquifers, consumer equity and affordability are lacking. We present a rigorous coupled human–natural system analysis of rural-to-urban tanker water market supply and demand in Jordan, a quintessential example of a nation relying heavily on such markets, fed by predominantly illegal water abstractions. Employing a shadow-economic approach validated using multiple data types, we estimate that unregulated water sales exceed government licences 10.7-fold, equalling 27% of the groundwater abstracted above sustainable yields. These markets supply 15% of all drinking water at high prices, account for 52% of all urban water revenue and constrain the public supply system’s ability to recover costs. We project that household reliance on tanker water will grow 2.6-fold by 2050 under population growth and climate change. Our analysis suggests that improving the efficiency and equity of public water supply is needed to ensure water security while avoiding uncontrolled groundwater depletion by growing tanker markets. 
    more » « less
    Free, publicly-accessible full text available August 14, 2024
  3. Urbanization in the global South is intricately linked with the internal mobility of people and the impacts of climate change. In India, changing precipitation patterns pose pressure on rural livelihoods through the increasing frequency and severity of droughts, contributing to rural-to-urban mobility. At destination, however, insufficient information is available on the complex mobility backgrounds of the new arrivals. We employ a mixed methods approach to investigate mobility patterns to Pune, India, with a special focus on the role of droughts. Combining a household survey with in-depth interviews and monthly precipitation data on district level, we use descriptive statistics and qualitative content analysis to show a significant relationship between drought at origin and mobility to Pune. Particularly affected are recent arrivals, migrants of rural origin and from other states, and those currently living in informal areas. The link between droughts and mobility decisions is usually indirect, hidden behind economic conditions such as the loss of agricultural jobs. Paradoxically, migrants affected by droughts at origin face increased flood risk at destination. This risk, however, is often consciously taken in favor of better livelihood opportunities in the city. With climate scenarios projecting increasingly variable precipitation patterns, understanding the climate-mobility-urbanization nexus gains importance, especially for destination hotspots like the city of Pune. 
    more » « less
    Free, publicly-accessible full text available May 25, 2024
  4. Emerging megacities in the global south face unprecedented transformation dynamics, manifested in rapid demographic, economic, and physical growth. Anticipating the associated sustainability and resilience challenges requires an understanding of future trajectories. Global change models provide consistent high-level urbanization scenarios. City-scale urban growth models accurately simulate complex physical growth. Modeling approaches linking the global and the local scale, however, are underdeveloped. This work introduces a novel approach to inform a local urban growth model by global Shared Socioeconomic Pathways to produce consistent maps of future urban expansion and population density via cellular automaton and dasymetric mapping. We demonstrate the approach for the case of Pune, India. Three scenarios are explored until 2050: business as usual (BAU), high, and low urbanization. After calibration and validation, the BAU scenario yields a 55% growth in Pune’s population and 90% in built-up extent, entailing significant impacts: Pune’s core city densifies further with up to 60,000 persons/km2, adding pressure to its strained infrastructure. In addition, 66–70% more residents are exposed to flood risk. Half of the urban expansion replaces agriculture, converting 167 km2 of land. The high-urbanization scenario intensifies these impacts. These results illustrate how spatially explicit scenario projections help identify impacts of urbanization and inform long-term planning. 
    more » « less
    Free, publicly-accessible full text available May 1, 2024
  5. Large cities worldwide are increasingly suffering from a nexus of food, water, and energy supply challenges. This complex nexus can be analyzed with modern physico-economic system models. Only when practical knowledge from those affected, experts, and decision makers is incorporated alongside various other data sources, however, are the analyses suitable for policy advice. Here, we present a concept for “Sustainability Nexus Workshops” suitable for extracting and preparing relevant practical knowledge for nexus modeling and apply it to the case of Amman, Jordan. The experiences of the workshop participants show that, although water scarcity is the predominant resource problem in Jordan, there is a close connection between food, water, and energy as well as between resource supply and urbanization. To prevent the foreseeable significant degradation of water supply security, actions are needed across all nexus dimensions. The stakeholders demonstrate an awareness of this and suggest a variety of technical measures, policy solutions, and individual behavioral changes—often in combination. Improving the supply of food, water, and energy requires political and institutional reforms. In developing these, it must be borne in mind that the prevalent informal structures and illegal activities are both strategies for coping with nexus challenges and causes of them. 
    more » « less
  6. Tanker water markets (TWM) supply water services in many urban areas, including those unconnected to public infrastructures. Notwithstanding, they have been associated with outcomes in conflict with sustainability goals of water policy, e.g., through inequitable and unaffordable supply or by contributing to groundwater overexploitation. So far, the literature dedicated to TWM has primarily conducted case studies embedded in diverse local contexts, which impedes the comparison and transfer of insights. In this article, we systematically summarize existing empirical knowledge on TWM and assess to what extent normative claims about the impacts of TWM on sustainability goals are supported by evidence. We use the concept of sustainable access, which combines notions of what constitutes access to water and what characterizes sustainable supply of services. The available evidence suggests that TWM have two key functions in urban water systems: (1) They provide services at otherwise unavailable levels, particularly with respect to the temporal availability and spatial accessibility of the service, and (2) they extend access to areas without or with low-quality network supply, typically low-income communities on the fringe of cities. From the perspective of sustainable access, we find that TWM can provide high service levels and thus fill a specific gap in the landscape of urban water services. Due to comparatively high prices, however, it is unlikely that these services are affordable for all. The combination of heterogeneous access to cheaper (subsidized) piped water and marginal pricing in TWM results in allocation outcomes that are not coherent with existing notions of equitable access to water. However, there is little convincing evidence that TWM necessarily result in unsustainable water use. The literature indicates that urban water governance in the studied areas is frequently characterized by a lack of effective institutions, which impedes the regulation or formalization of TWM. 
    more » « less
  7. Systems models of the Food–Water–Energy (FWE) nexus face a conceptual difficulty: the systematic integration of local stakeholder perspectives into a coherent framework for analysis. We present a novel procedure to co-produce and systematize the real-life complexity of stakeholder knowledge and forge it into a clear-cut set of challenges. These are clustered into the Pressure–State–Response (PSIR) framework, which ultimately guides the development of a conceptual systems model closely attuned to the needs of local stakeholders. We apply this approach to the case of the emerging megacity Pune and the Bhima basin in India. Through stakeholder workshops, involving 75 resource users and experts, we identified 22 individual challenges. They include exogenous pressures, such as climate change and urbanization, and endogenous pressures, such as agricultural groundwater over-abstraction and land use change. These pressures alter the Bhima basin’s system state, characterized by inefficient water and energy supply systems and regional scarcity. The consequent impacts on society encompass the inadequate provision with food, water, and energy and livelihood challenges for farmers in the basin. An evaluation of policy responses within the conceptual systems model shows the complex cause–effect interactions between nexus subsystems. One single response action, such as the promotion of solar farming, can affect multiple challenges. The resulting concise picture of the regional FWE system serves resource users, policymakers, and researchers to evaluate long-term policies within the context of the urban FWE system. While the presented results are specific to the case study, the approach can be transferred to any other FWE nexus system. 
    more » « less
  8. Many private households spend considerable amounts of time accessing water, for instance by walking to and queuing at public access points, or by filling storage vessels at taps with low flow rates. This time has an opportunity cost, which can be substantial and may impact which water services and quantities of water households demand. In a novel form of diary study, we gathered detailed water consumption and time use data from 50 households in five informal settlements of the Indian metropolis Pune, accompanied by a household survey and in-depth interviews. With the data, we characterize water collection behaviors and assign monetary values to water procurement time. We statistically analyze the effects of time cost on consumed quantities in several two-level mixed-effect models. Household members in our sample spend up to several hours each day filling storage vessels, even if a private connection to the piped network is available. Average time cost amounted to the equivalent of 4.23–13.81% of monthly household cash income. Our analyses indicate that procurement time reduces quantitative water demand in a significant way. The households incurring the highest per-unit time cost consumed water quantities below minimum levels recommended for human health. This substantiates that time costs can impede access to water and are a relevant issue for water management and policy. 
    more » « less
  9. In India, the second-largest sugarcane producing country in the world, accurate mapping of sugarcane land is a key to designing targeted agricultural policies. Such a map is not available, however, as it is challenging to reliably identify sugarcane areas using remote sensing due to sugarcane’s phenological characteristics, coupled with a range of cultivation periods for different varieties. To produce a modern sugarcane map for the Bhima Basin in central India, we utilized crowdsourced data and applied supervised machine learning (neural network) and unsupervised classification methods individually and in combination. We highlight four points. First, smartphone crowdsourced data can be used as an alternative ground truth for sugarcane mapping but requires careful correction of potential errors. Second, although the supervised machine learning method performs best for sugarcane mapping, the combined use of both classification methods improves sugarcane mapping precision at the cost of worsening sugarcane recall and missing some actual sugarcane area. Third, machine learning image classification using high-resolution satellite imagery showed significant potential for sugarcane mapping. Fourth, our best estimate of the sugarcane area in the Bhima Basin is twice that shown in government statistics. This study provides useful insights into sugarcane mapping that can improve the approaches taken in other regions. 
    more » « less