skip to main content

Search for: All records

Award ID contains: 1830215

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 11, 2024
  2. Free, publicly-accessible full text available August 11, 2024
  3. Free, publicly-accessible full text available August 11, 2024
  4. Free, publicly-accessible full text available August 11, 2024
  5. Estimating human joint moments using wearable sensors has utility for personalized health monitoring and generalized exoskeleton control. Data-driven models have potential to map wearable sensor data to human joint moments, even with a reduced sensor suite and without subject-specific calibration. In this study, we quantified the RMSE and R 2 of a temporal convolutional network (TCN), trained to estimate human hip moments in the sagittal plane using exoskeleton sensor data (i.e., a hip encoder and thigh- and pelvis-mounted inertial measurement units). We conducted three analyses in which we iteratively retrained the network while: 1) varying the input sequence length of the model, 2) incorporating noncausal data into the input sequence, thus delaying the network estimates, and 3) time shifting the labels to train the model to anticipate (i.e., predict) human hip moments. We found that 930 ms of causal input data maintained model performance while minimizing input sequence length (validation RMSE and R 2 of 0.141±0.014 Nm/kg and 0.883±0.025, respectively). Further, delaying the model estimate by up to 200 ms significantly improved model performance compared to the best causal estimators (p<0.05), improving estimator fidelity in use cases where delayed estimates are acceptable (e.g., in personalized health monitoring or diagnoses). Finally, we found that anticipating hip moments further in time linearly increased model RMSE and decreased R 2 (p<0.05); however, performance remained strong (R 2 >0.85) when predicting up to 200 ms ahead. 
    more » « less
  6. Proportional myoelectric controller (PMC) has been one of the most common assistance strategies for robotic exoskeletons due to its ability to modulate assistance level directly based on the user's muscle activation. However, existing PMC strategies (static or user-adaptive) scale torque linearly with muscle activation level and fail to address complex and non-linear mapping between muscle activation and joint torque. Furthermore, previously presented adaptive PMC strategies do not allow for environmental changes (such as changes in ground slopes) and modulate the system's assistance level over many steps. In this work, we designed a novel user- and environment-adaptive PMC for a knee exoskeleton that modulates the peak assistance level based on the slope level during locomotion. We recruited nine able-bodied adults to test and compare the effects of three different PMC strategies (static, user-adaptive, and user- and environment-adaptive) on the user's metabolic cost and the knee extensor muscle activation level during load-carriage walking (6.8 kg) in three inclination settings (0°, 4.5°, and 8.5°). The results showed that only the user- and environment-adaptive PMC was effective in significantly reducing user's metabolic cost (5.8% reduction) and the knee extensor muscle activation (19% reduction) during 8.5° incline walking compared to the unpowered condition while other PMCs did not have as large of an effect. This control framework highlights the viability of implementing an assistance paradigm that can dynamically adjust to the user's biological demand, allowing for a more personalized assistance paradigm. 
    more » « less
  7. Abstract Series elastic actuators (SEAs) are increasingly popular in wearable robotics due to their high fidelity closed-loop torque control capability. Therefore, it has become increasingly important to characterize its performance when used in dynamic environments. However, the conventional design approach does not fully capture the complexity of the entire exoskeleton system. These limitations stem from identifying design criteria with inadequate biomechanics data, utilizing an off-the-shelf user interface, and applying a benchtop-based proportional-integral-derivative control for actual low-level torque tracking. While this approach shows decent actuator performance, it does not consider human factors such as the dynamic back-driving nature of human-exoskeleton systems as well as soft human tissue dampening during the load transfer. Using holistic design guidelines to improve the SEA-based exoskeleton performance during dynamic locomotion, our final system has an overall mass of 4.8 kg (SEA mass of 1.1 kg) and can provide a peak joint torque of 108 Nm with a maximum velocity of 5.2 rad/s. Additionally, we present a user state-based feedforward controller to further improve the low-level torque tracking for diverse walking conditions. Our study results provide future exoskeleton designers with a foundation to further improve SEA-based exoskeleton’s torque tracking response for maximizing human-exoskeleton performance during dynamic locomotion. 
    more » « less
  8. Objective: Semi-active exoskeletons combining lightweight, low powered actuators and passive-elastic elements are a promising approach to portable robotic assistance during locomotion. Here, we introduce a novel semi-active hip exoskeleton concept and evaluate human walking performance across a range of parameters using a tethered robotic testbed. Methods : We emulated semi-active hip exoskeleton (exo) assistance by applying a virtual torsional spring with a fixed rotational stiffness and an equilibrium angle established in terminal swing phase (i.e., via pre-tension into stance). We performed a 2-D sweep of spring stiffness x equilibrium position parameters (30 combinations) across walking speed (1.0, 1.3, and 1.6 m/s) and measured metabolic rate to identify device parameters for optimal metabolic benefit. Results : At each speed, optimal exoskeleton spring settings provided a ∼10% metabolic benefit compared to zero-impedance (ZI). Higher walking speeds required higher exoskeleton stiffness and lower equilibrium angle for maximal metabolic benefit. Optimal parameters tuned to each individual (user-dependent) provided significantly larger metabolic benefit than the average-best settings (user-independent) at all speeds except the fastest (p = 0.021, p = 0.001, and p = 0.098 at 1.0, 1.3, and 1.6 m/s, respectively). We found significant correlation between changes in user's muscle activity and changes in metabolic rate due to exoskeleton assistance, especially for muscles crossing the hip joint. Conclusion : A semi-active hip exoskeleton with spring-parameters personalized to each user could provide metabolic benefit across functional walking speeds. Minimizing muscle activity local to the exoskeleton is a promising approach for tuning assistance on-line on a user-dependent basis. 
    more » « less
  9. Autonomous lower-limb exoskeletons must modulate assistance based on locomotion mode (e.g., ramp or stair ascent) to adapt to the corresponding changes in human biological joint dynamics. However, current mode classification strategies for exoskeletons often require user-specific tuning, have a slow update rate, and rely on additional sensors outside of the exoskeleton sensor suite. In this study, we introduce a deep convolutional neural network-based locomotion mode classifier for hip exoskeleton applications using an open-source gait biomechanics dataset with various wearable sensors. Our approach removed the limitations of previous systems as it is 1) subject-independent (i.e., no user-specific data), 2) capable of continuously classifying for smooth and seamless mode transitions, and 3) only utilizes minimal wearable sensors native to a conventional hip exoskeleton. We optimized our model, based on several important factors contributing to overall performance, such as transition label timing, model architecture, and sensor placement, which provides a holistic understanding of mode classifier design. Our optimized DL model showed a 3.13% classification error (steady-state: 0.80 ± 0.38% and transitional: 6.49 ± 1.42%), outperforming other machine learning-based benchmarks commonly practiced in the field (p<0.05). Furthermore, our multi-modal analysis indicated that our model can maintain high performance in different settings such as unseen slopes on stairs or ramps. Thus, our study presents a novel locomotion mode framework, capable of advancing robotic exoskeleton applications toward assisting community ambulation. 
    more » « less
  10. Tibiofemoral compression forces present during locomotion can result in high stress and risk damage to the knee. Powered assistance using a knee exoskeleton may reduce the knee load by reducing the work required by the muscles. However, the exact effect of assistance on the tibiofemoral force is unknown. The goal of this study was to investigate the effect of knee extension assistance during the early stance phase on the tibiofemoral force. Nine able-bodied adults walked on an inclined treadmill with a bilateral knee exoskeleton with assistance and with no assistance. Using an EMG-informed neuromusculoskeletal model, muscle forces were estimated, then utilized to estimate the tibiofemoral contact force. Results showed a 28% reduction in the knee moment, which resulted in approximately a 15% decrease in knee extensor muscle activation and a 20% reduction in subsequent muscle force, leading to a significant 10% reduction in peak and 9% reduction in average tibiofemoral contact force during the early stance phase (p < 0.05). The results indicate the tibiofemoral force is highly dependent on the knee kinetics and quadricep muscle activation due to their influence on knee extensor muscle forces, the primary contributor to the knee load. 
    more » « less