skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1830388

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Herein, a new class of robust bicontinuous elastomer–metal foam composites with highly tunable mechanical stiffness is proposed, fabricated, characterized, and demonstrated. The smart composite is a bicontinuous network of two foams, one metallic made of a low melting point alloy (LMPA) and the other elastomeric made of polydimethylsiloxane (PDMS). The stiffness of the composite can be tuned by inducing phase changes in its LMPA component. Below the melting point of the LMPA, Young's modulus of the smart composites is ≈1 GPa, whereas above the melting point of the LMPA it is ≈1 MPa. Thus, a sharp stiffness change of ≈1000× can be realized through the proposed bicontinuous foam composite structure, which is higher than all available robust smart composites. Effective medium theory is also used to predict the Young's modulus of the bicontinuous smart composites, which generates reasonable agreement with experimentally measured Young's modulus of the smart composites. Finally, the use of these smart materials as a smart joint in a robotic arm is also demonstrated. 
    more » « less