skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1830732

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Since the impact ∼50,000 yr ago, surface runoff has entrained and transported sediment from the walls to the floor of Meteor Crater (Arizona, USA). Previous work interpreted this erosion and deposition to be due to predominantly fluvial (i.e., dilute water transport) processes. However, light detection and ranging (LiDAR)−derived topographic data and field observations indicate that debris flows dominated, which were likely generated by runoff that entrained the talus that borders bedrock cliffs high on the crater walls. The low gradient of the crater floor caused debris flows to stop, leaving lobate deposits, while fluvial processes delivered sediment toward the center of the crater. Cosmogenic radionuclide dating of levee deposits suggests that debris-flow activity ceased in the late Pleistocene, synchronous with regional drying. Assuming a rock-to-water ratio of 0.3 at the time of transport by mass flows, it would have taken ∼2 × 106 m3 of water to transport the estimated ∼6.8 × 106 m3 of debris-flow deposits found at the surface of the crater floor. This extensive erosion would require ∼6 m of total runoff over the 0.35 km2 upslope source area of the crater, or ∼18 mm of runoff per debris-flow event. Much more runoff did occur, as evidenced by crater lake deposits, Holocene fluvial activity (which produced little erosion), and contemporary rainfall rates. Rarely on Earth is the total amount of water that creates and runs through a landscape estimated, yet such calculations are commonly done on Mars. Our analysis suggests that erosional and depositional landforms may record only a small fraction of the total runoff. 
    more » « less
  2. null (Ed.)
    Bedrock weathering regulates nutrient mobilization, water storage, and soil production. Relative to the mobile soil layer, little is known about the relationship between topography and bedrock weathering. Here, we identify a common pattern of weathering and water storage across a sequence of three ridges and valleys in the sedimentary Great Valley Sequence in Northern California that share a tectonic and climate history. Deep drilling, downhole logging, and characterization of chemistry and porosity reveal two weathering fronts. The shallower front is ∼7 m deep at the ridge of all three hillslopes, and marks the extent of pervasive fracturing and oxidation of pyrite and organic carbon. A deeper weathering front marks the extent of open fractures and discoloration. This front is 11 m deep under two ridges of similar ridge-valley spacing, but 17.5 m deep under a ridge with nearly twice the ridge-valley spacing. Hence, at ridge tops, the fraction of the hillslope relief that is weathered scales with hillslope length. In all three hillslopes, below this second weathering front, closed fractures and unweathered bedrock extend about one-half the hilltop elevation above the adjacent channels. Neutron probe surveys reveal that seasonally dynamic moisture is stored to approximately the same depth as the shallow weathering front. Under the channels that bound our study hillslopes, the two weathering fronts coincide and occur within centimeters of the ground surface. Our findings provide evidence for feedbacks between erosion and weathering in mountainous landscapes that result in systematic subsurface structuring and water routing. 
    more » « less
  3. The rate of chemical weathering has been observed to increase with the rate of physical erosion in published comparisons of many catchments, but the mechanisms that couple these processes are not well understood. We investigated this question by exam- ining the chemical weathering and porosity profiles from catchments developed on marine shale located in Pennsylvania, USA (Susquehanna Shale Hills Critical Zone Observatory, SSHCZO); California, USA (Eel River Critical Zone Observatory, ERC- ZO); and Taiwan (Fushan Experimental Forest). The protolith compositions, protolith porosities, and the depths of regolith at these sites are roughly similar while the catchments are characterized by large differences in erosion rate (1–3 mm yr􏱝1 in Fushan 􏱞 0.2–0.4 mm yr􏱝1 in ERCZO 􏱞 0.01–0.025 mm yr􏱝1 in SSHCZO). The natural experiment did not totally isolate erosion as a variable: mean annual precipitation varied along the erosion gradient (4.2 m yr􏱝1 in Fushan > 1.9 m yr􏱝1 in ERCZO > 1.1 m yr􏱝1 in SSHCZO), so the fastest eroding site experiences nearly twice the mean annual temperature of the other two. Even though erosion rates varied by about 100􏱟, the depth of pyrite and carbonate depletion (defined here as regolith thickness) is roughly the same, consistent with chemical weathering of those minerals keeping up with erosion at the three sites. These minerals were always observed to be the deepest to react, and they reacted until 100% depletion. In two of three of the catchments where borehole observations were available for ridges, these minerals weathered across narrow reaction fronts. On the other hand, for the rock-forming clay mineral chlorite, the depth interval of weathering was wide and the extent of depletion observed at the land surface decreased with increasing erosion/precipitation. Thus, chemical weathering of the clay did not keep pace with erosion rate. But perhaps the biggest difference among the shales is that in the fast-eroding sites, microfractures account for 30–60% of the total porosity while in the slow-eroding shale, dissolution could be directly related to secondary porosity. We argue that the microfractures increase the influx of oxygen at depth and decrease the size of diffusion-limited internal domains of matrix, accelerating weathering of pyrite and carbonate under high erosion-rate condi- tions. Thus, microfracturing is a process that can couple physical erosion and chemical weathering in shales. 
    more » « less