skip to main content


Search for: All records

Award ID contains: 1830793

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Supporting students to frame design problems is one of the most challenging aspects of engineering education, and as faculty, sharing agency with students, such that they have framing agency to make decisions that are consequential to the problem frame is difficult. In this paper, we report on students’ progress framing authentic problems early and after four months of work. Set in a high-agency, co-curricular intramural program where students work on interdisciplinary design projects, we found, using surveys and student work, that early in the process, students reported open-ended problems constrained somewhat by budget or design requirements. Over time, they came to recognize their own limitations as constraining, became more tentative in their treatment of the problem, and reported opportunities to learn from their own and peers’ decisions. Students who reported opportunities to learn also reported working on somewhat more constrained problems yet being able to make consequential decisions. Collectively, this suggests problems that offer a Goldilocks middle ground, that include endemic constraints yet allow students to make consequential decisions may be a key ingredient for developing problem framing capacity. We share instructional implications related to supporting students to differentiate between design requirements and constraints, in shifting from qualitative understandings to quantitative requirements and their role in doing so, and navigating their own limitations. 
    more » « less
  2. null (Ed.)
  3. Problem solving is central to engineering education. Yet, there little agreement regarding what constitutes an exemplary design problem or case analysis problem for modeling undergraduate instruction after. There is even less agreement in engineering education literature regarding the best way to measure students ability or progress in learning to be better problem solvers in these discrete problem categories. We describe the development of a research method toward accessing how students think about design is described, what constitutes a measurable response, and how to compare through qualitative research methods pre and post student performance. The discussion draws from Jonassen’s (2000) framework for problem typology, as well as cognitive learning frameworks of design thinking, and metacognition as a theoretical basis that informs the problem formulation and planned approach for analysis. 
    more » « less
  4. null (Ed.)