skip to main content


Search for: All records

Award ID contains: 1830802

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
  3. This Work-in-Progress paper in the Research Category uses a retrospective mixed-methods study to better understand the factors that mediate learning of computational modeling by life scientists. Key stakeholders, including leading scientists, universities and funding agencies, have promoted computational modeling to enable life sciences research and improve the translation of genetic and molecular biology high- throughput data into clinical results. Software platforms to facilitate computational modeling by biologists who lack advanced mathematical or programming skills have had some success, but none has achieved widespread use among life scientists. Because computational modeling is a core engineering skill of value to other STEM fields, it is critical for engineering and computer science educators to consider how we help students from across STEM disciplines learn computational modeling. Currently we lack sufficient research on how best to help life scientists learn computational modeling. To address this gap, in 2017, we observed a short-format summer course designed for life scientists to learn computational modeling. The course used a simulation environment designed to lower programming barriers. We used semi-structured interviews to understand students' experiences while taking the course and in applying computational modeling after the course. We conducted interviews with graduate students and post- doctoral researchers who had completed the course. We also interviewed students who took the course between 2010 and 2013. Among these past attendees, we selected equal numbers of interview subjects who had and had not successfully published journal articles that incorporated computational modeling. This Work-in-Progress paper applies social cognitive theory to analyze the motivations of life scientists who seek training in computational modeling and their attitudes towards computational modeling. Additionally, we identify important social and environmental variables that influence successful application of computational modeling after course completion. The findings from this study may therefore help us educate biomedical and biological engineering students more effectively. Although this study focuses on life scientists, its findings can inform engineering and computer science education more broadly. Insights from this study may be especially useful in aiding incoming engineering and computer science students who do not have advanced mathematical or programming skills and in preparing undergraduate engineering students for collaborative work with life scientists. 
    more » « less
  4. This Work-in-Progress paper in the Research Category explores the unique challenges and opportunities of interdisciplinary education in computational modeling for life sciences student researchers at emerging research institutions (ERIs), specifically in predominantly undergraduate institutions (PUIs), and minority serving institutions (MSIs). Engineering approaches such as computational modeling have underappreciated potential for capacity building for the biomedical research enterprises of ERIs. We perform a bibliometric analysis to assess the prevailing use of computational modeling in life sciences research at MSIs, and PUIs. Additionally, we apply Social and Cognitive Theory to identify unique attitudinal, social and structural barriers for student researchers in learning and using computational modeling approaches at each of these types of institutions. Specifically, we use quantitative retrospective pre- and post-survey data and qualitative interviews of students who have attended a short-format computational modeling training course. We supplement these data with qualitative interviews of the students' faculty sponsors. Upon completion, this study will provide deeper understanding of issues related to computer science and engineering education at non-Research I institutions. 
    more » « less