Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract The biggest challenge in using CRISPR technologies, which limits their widespread application in medicine, is off-target effects. These effects could, in principle, be minimized by ensuring that CRISPR is activated primarily in the targeted cells, thereby reducing the likelihood of unintended genetic modifications in non-target tissues. Therefore, the development of a light activatable CRISPR approach to dynamically control gene activation in both space and time would be highly beneficial. A drawback is that the overwhelming majority of recently introduced light activatable CRISPR systems require UV or blue light exposure, severely limiting the penetration depth of light in tissue at which CRISPR can be activated, and, in the case of UV light, raising safety concerns. A small number of systems that activate CRISPR using longer wavelengths are hindered by either slow light activation or issues related to toxicity and biocompatibility of the proposed techniques in humans. To address this, we developed a split-Cas9/dCas9 system in which activation is achieved through a near-infrared photocleavable dimerization complex. This photoactivation method can be safely used in humans in vivo, easily adapted to different split-Cas9/dCas9 systems, and enables rapid, spatially precise light activation across various cell types.more » « less
- 
            Abstract Bile duct cancer is the second most common primary liver cancer, with most diagnoses occurring in the advanced stages. This leads to a poor survival rate, which means a technique capable of reliably detecting pre-cancer in the bile duct is urgently required. Unfortunately, radiological imaging lacks adequate accuracy for distinguishing dysplastic and benign biliary ducts, while endoscopic techniques, which can directly assess the bile duct lining, often suffer from insufficient sampling. Here, we report an endoscopic optical light scattering technique for clinical evaluation of the malignant potential of the bile duct. This technique employs an ultraminiature spatial gating fiber optic probe compatible with cholangioscopes and endoscopic retrograde cholangiopancreatography (ERCP) catheters. The probe allowed us to investigate the internal cellular composition of the bile duct epithelium with light scattering spectroscopy (LSS) and phenotypic properties of the underlying connective tissue with diffuse reflectance spectroscopy (DRS). In a pilot in vivo double-blind prospective study involving 29 patients undergoing routine ERCP procedures, the technique detected malignant transformation with 97% accuracy, showing that biliary duct pre-cancer can be reliably identified in vivo non-invasively.more » « less
- 
            Abstract The enormous increase of Raman signal in the vicinity of metal nanoparticles allows surface‐enhanced Raman spectroscopy (SERS) to be employed for label‐free detection of substances at extremely low concentrations. However, the ultimate potential of label‐free SERS to identify pharmaceutical compounds at low concentrations, especially in relation to biofluid sensing, is far from being fully realized. Opioids are a particular challenge for rapid clinical identification because their molecular structural similarities prevent their differentiation with immunolabeling approaches. In this paper, a new method called quantitative label‐free SERS (QLF‐SERS) which involves the formation of halide‐conjugated gold nanoclusters trapping the analyte of interest near the SERS hot spots is reported, and it is demonstrated that it yields a 105fold improvement in the detection limit over previously reported results for the entire class of clinically relevant opioids and their metabolites. Measurements of opioid concentrations in multicomponent mixtures are also demonstrated. QLF‐SERS has comparable detection limits as currently existing laboratory urine drug testing techniques but is significantly faster and inexpensive and, therefore, can be easily adapted as part of a rapid clinical laboratory routine.more » « less
- 
            null (Ed.)Organoids formed from human induced pluripotent stem cells (hiPSCs) could be a limitless source of functional tissue for transplantations in many organs. Unfortunately, fine-tuning differentiation protocols to form large quantities of hiPSC organoids in a controlled, scalable, and reproducible manner is quite difficult and often takes a very long time. Recently, we introduced a new approach of rapid organoid formation from dissociated hiPSCs and endothelial cells using microfabricated cell-repellent microwell arrays. This approach, when combined with real-time label-free Raman spectroscopy of biochemical composition changes and confocal light scattering spectroscopic microscopy of chromatin transition, allows for monitoring live differentiating organoids without the need to sacrifice a sample, substantially shortening the time of protocol fine-tuning. We used this approach to both culture and monitor homogeneous liver organoids that have the main functional features of the human liver and which could be used for cell transplantation liver therapy in humans.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
