Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract MotivationVolumetric 3D object analyses are being applied in research fields such as structural bioinformatics, biophysics, and structural biology, with potential integration of artificial intelligence/machine learning (AI/ML) techniques. One such method, 3D Zernike moments, has proven valuable in analyzing protein structures (e.g., protein fold classification, protein–protein interaction analysis, and molecular dynamics simulations). Their compactness and efficiency make them amenable to large-scale analyses. Established methods for deriving 3D Zernike moments, however, can be inefficient, particularly when higher order terms are required, hindering broader applications. As the volume of experimental and computationally-predicted protein structure information continues to increase, structural biology has become a “big data” science requiring more efficient analysis tools. ResultsThis application note presents a Python-based software package, ZMPY3D, to accelerate computation of 3D Zernike moments by vectorizing the mathematical formulae and using graphical processing units (GPUs). The package offers popular GPU-supported libraries such as CuPy and TensorFlow together with NumPy implementations, aiming to improve computational efficiency, adaptability, and flexibility in future algorithm development. The ZMPY3D package can be installed via PyPI, and the source code is available from GitHub. Volumetric-based protein 3D structural similarity scores and transform matrix of superposition functionalities have both been implemented, creating a powerful computational tool that will allow the research community to amalgamate 3D Zernike moments with existing AI/ML tools, to advance research and education in protein structure bioinformatics. Availability and implementationZMPY3D, implemented in Python, is available on GitHub (https://github.com/tawssie/ZMPY3D) and PyPI, released under the GPL License.more » « less
- 
            Abstract Open access to three-dimensional atomic-level biostructure information from the Protein Data Bank (PDB) facilitated discovery/development of 100% of the 34 new low molecular weight, protein-targeted, antineoplastic agents approved by the US FDA 2019–2023. Analyses of PDB holdings, the scientific literature, and related documents for each drug-target combination revealed that the impact of structural biologists and public-domain 3D biostructure data was broad and substantial, ranging from understanding target biology (100% of all drug targets), to identifying a given target as likely druggable (100% of all targets), to structure-guided drug discovery (>80% of all new small-molecule drugs, made up of 50% confirmed and >30% probable cases). In addition to aggregate impact assessments, illustrative case studies are presented for six first-in-class small-molecule anti-cancer drugs, including a selective inhibitor of nuclear export targeting Exportin 1 (selinexor, Xpovio), an ATP-competitive CSF-1R receptor tyrosine kinase inhibitor (pexidartinib,Turalia), a non-ATP-competitive inhibitor of the BCR-Abl fusion protein targeting the myristoyl binding pocket within the kinase catalytic domain of Abl (asciminib, Scemblix), a covalently-acting G12C KRAS inhibitor (sotorasib, Lumakras or Lumykras), an EZH2 methyltransferase inhibitor (tazemostat, Tazverik), and an agent targeting the basic-Helix-Loop-Helix transcription factor HIF-2α (belzutifan, Welireg).more » « less
- 
            Abstract MotivationMapping positional features from one-dimensional (1D) sequences onto three-dimensional (3D) structures of biological macromolecules is a powerful tool to show geometric patterns of biochemical annotations and provide a better understanding of the mechanisms underpinning protein and nucleic acid function at the atomic level. ResultsWe present a new library designed to display fully customizable interactive views between 1D positional features of protein and/or nucleic acid sequences and their 3D structures as isolated chains or components of macromolecular assemblies. Availability and implementationhttps://github.com/rcsb/rcsb-saguaro-3d. Supplementary informationSupplementary data are available at Bioinformatics online.more » « less
- 
            Abstract MotivationMembrane proteins are encoded by approximately one fifth of human genes but account for more than half of all US FDA approved drug targets. Thanks to new technological advances, the number of membrane proteins archived in the PDB is growing rapidly. However, automatic identification of membrane proteins or inference of membrane location is not a trivial task. ResultsWe present recent improvements to the RCSB Protein Data Bank web portal (RCSB PDB, rcsb.org) that provide a wealth of new membrane protein annotations integrated from four external resources: OPM, PDBTM, MemProtMD and mpstruc. We have substantially enhanced the presentation of data on membrane proteins. The number of membrane proteins with annotations available on rcsb.org was increased by ∼80%. Users can search for these annotations, explore corresponding tree hierarchies, display membrane segments at the 1D amino acid sequence level, and visualize the predicted location of the membrane layer in 3D. Availability and implementationAnnotations, search, tree data and visualization are available at our rcsb.org web portal. Membrane visualization is supported by the open-source Mol* viewer (molstar.org and github.com/molstar/molstar). Supplementary informationSupplementary data are available at Bioinformatics online.more » « less
- 
            Abstract An integrative approach to visualization is used to create a visual snapshot of the structural biology of the polar microdomain ofCaulobacter crescentus. The visualization is based on the current state of molecular and cellular knowledge of the microdomain and its cellular context. The collaborative process of researching and executing the visualization has identified aspects that are well determined and areas that require further study. The visualization is useful for dissemination, education, and outreach, and the study lays the groundwork for future 3D modeling and simulation of this well‐studied example of a cellular condensate.more » « less
- 
            Abstract The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB), founding member of the Worldwide Protein Data Bank (wwPDB), is the US data center for the open-access PDB archive. As wwPDB-designated Archive Keeper, RCSB PDB is also responsible for PDB data security. Annually, RCSB PDB serves >10 000 depositors of three-dimensional (3D) biostructures working on all permanently inhabited continents. RCSB PDB delivers data from its research-focused RCSB.org web portal to many millions of PDB data consumers based in virtually every United Nations-recognized country, territory, etc. This Database Issue contribution describes upgrades to the research-focused RCSB.org web portal that created a one-stop-shop for open access to ∼200 000 experimentally-determined PDB structures of biological macromolecules alongside >1 000 000 incorporated Computed Structure Models (CSMs) predicted using artificial intelligence/machine learning methods. RCSB.org is a ‘living data resource.’ Every PDB structure and CSM is integrated weekly with related functional annotations from external biodata resources, providing up-to-date information for the entire corpus of 3D biostructure data freely available from RCSB.org with no usage limitations. Within RCSB.org, PDB structures and the CSMs are clearly identified as to their provenance and reliability. Both are fully searchable, and can be analyzed and visualized using the full complement of RCSB.org web portal capabilities.more » « less
- 
            Abstract Communication and collaboration are key science competencies that support sharing of scientific knowledge with experts and non‐experts alike. On the one hand, they facilitate interdisciplinary conversations between students, educators, and researchers, while on the other they improve public awareness, enable informed choices, and impact policy decisions. Herein, we describe an interdisciplinary undergraduate course focused on using data from various bioinformatics data resources to explore the molecular underpinnings of diabetes mellitus (Types 1 and 2) and introducing students to science communication. Building on course materials and original student‐generated artifacts, a series of collaborative activities engaged students, educators, researchers, healthcare professionals and community members in exploring, learning about, and discussing the molecular bases of diabetes. These collaborations generated novel educational materials and approaches to learning and presenting complex ideas about major global health challenges in formats accessible to diverse audiences.more » « less
- 
            Abstract Atomic-level three-dimensional (3D) structure data for biological macromolecules often prove critical to dissecting and understanding the precise mechanisms of action of cancer-related proteins and their diverse roles in oncogenic transformation, proliferation, and metastasis. They are also used extensively to identify potentially druggable targets and facilitate discovery and development of both small-molecule and biologic drugs that are today benefiting individuals diagnosed with cancer around the world. 3D structures of biomolecules (including proteins, DNA, RNA, and their complexes with one another, drugs, and other small molecules) are freely distributed by the open-access Protein Data Bank (PDB). This global data repository is used by millions of scientists and educators working in the areas of drug discovery, vaccine design, and biomedical and biotechnology research. The US Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) provides an integrated portal to the PDB archive that streamlines access for millions of worldwide PDB data consumers worldwide. Herein, we review online resources made available free of charge by the RCSB PDB to basic and applied researchers, healthcare providers, educators and their students, patients and their families, and the curious public. We exemplify the value of understanding cancer-related proteins in 3D with a case study focused on human papillomavirus.more » « less
- 
            Abstract The Protein Data Bank (PDB) archive is a rich source of information in the form of atomic‐level three‐dimensional (3D) structures of biomolecules experimentally determined using macromolecular crystallography, nuclear magnetic resonance (NMR) spectroscopy, and electron microscopy (3DEM). Originally established in 1971 as a resource for protein crystallographers to freely exchange data, today PDB data drive research and education across scientific disciplines. In 2011, the online portal PDB‐101 was launched to support teachers, students, and the general public in PDB archive exploration (pdb101.rcsb.org). Maintained by the Research Collaboratory for Structural Bioinformatics PDB, PDB‐101 aims to help train the next generation of PDB users and to promote the overall importance of structural biology and protein science to nonexperts. Regularly published features include the highly popularMolecule of the Monthseries, 3D model activities, molecular animation videos, and educational curricula. Materials are organized into various categories (Health and Disease, Molecules of Life, Biotech and Nanotech, and Structures and Structure Determination) and searchable by keyword. A biennial health focus frames new resource creation and provides topics for annual video challenges for high school students. Web analytics document that PDB‐101 materials relating to fundamental topics (e.g., hemoglobin, catalase) are highly accessed year‐on‐year. In addition, PDB‐101 materials created in response to topical health matters (e.g., Zika, measles, coronavirus) are well received. PDB‐101 shows how learning about the diverse shapes and functions of PDB structures promotes understanding of all aspects of biology, from the central dogma of biology to health and disease to biological energy.more » « less
- 
            Abstract We present the assembly category assessment in the 13th edition of the CASP community‐wide experiment. For the second time, protein assemblies constitute an independent assessment category. Compared to the last edition we see a clear uptake in participation, more oligomeric targets released, and consistent, albeit modest, improvement of the predictions quality. Looking at the tertiary structure predictions, we observe that ignoring the oligomeric state of the targets hinders modeling success. We also note that some contact prediction groups successfully predicted homomeric interfacial contacts, though it appears that these predictions were not used for assembly modeling. Homology modeling with sizeable human intervention appears to form the basis of the assembly prediction techniques in this round of CASP. Future developments should see more integrated approaches where subunits are modeled in the context of the assemblies they form.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
