skip to main content


Search for: All records

Award ID contains: 1832613

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    One of the most challenging aspects of developing high-energy lithium-based batteries is the structural and (electro)chemical stability of Ni-rich active cathode materials at thermally-abused and prolonged cell cycling conditions. Here, we report in situ physicochemical characterizations to improve the fundamental understanding of the degradation mechanism of charged polycrystalline Ni-rich cathodes at elevated temperatures (e.g., ≥ 40 °C). Using multiple microscopy, scattering, thermal, and electrochemical probes, we decouple the major contributors for the thermal instability from intertwined factors. Our research work demonstrates that the grain microstructures play an essential role in the thermal stability of polycrystalline lithium-based positive battery electrodes. We also show that the oxygen release, a crucial process during battery thermal runaway, can be regulated by engineering grain arrangements. Furthermore, the grain arrangements can also modulate the macroscopic crystallographic transformation pattern and oxygen diffusion length in layered oxide cathode materials.

     
    more » « less
  2. Abstract

    Crystallographic defects exist in many redox active energy materials, e.g., battery and catalyst materials, which significantly alter their chemical properties for energy storage and conversion. However, there is lack of quantitative understanding of the interrelationship between crystallographic defects and redox reactions. Herein, crystallographic defects, such as geometrically necessary dislocations, are reported to influence the redox reactions in battery particles through single‐particle, multimodal, and in situ synchrotron measurements. Through Laue X‐ray microdiffraction, many crystallographic defects are spatially identified and statistically quantified from a large quantity of diffraction patterns in many layered oxide particles, including geometrically necessary dislocations, tilt boundaries, and mixed defects. The in situ and ex situ measurements, combining microdiffraction and X‐ray spectroscopy imaging, reveal that LiCoO2particles with a higher concentration of geometrically necessary dislocations provide deeper charging reactions, indicating that dislocations may facilitate redox reactions in layered oxides during initial charging. The present study illustrates that a precise control of crystallographic defects and their distribution can potentially promote and homogenize redox reactions in battery materials.

     
    more » « less
  3. Abstract

    Architecting grain crystallographic orientation can modulate charge distribution and chemomechanical properties for enhancing the performance of polycrystalline battery materials. However, probing the interplay between charge distribution, grain crystallographic orientation, and performance remains a daunting challenge. Herein, we elucidate the spatially resolved charge distribution in lithium layered oxides with different grain crystallographic arrangements and establish a model to quantify their charge distributions. While the holistic “surface-to-bulk” charge distribution prevails in polycrystalline particles, the crystallographic orientation-guided redox reaction governs the charge distribution in the local charged nanodomains. Compared to the randomly oriented grains, the radially aligned grains exhibit a lower cell polarization and higher capacity retention upon battery cycling. The radially aligned grains create less tortuous lithium ion pathways, thus improving the charge homogeneity as statistically quantified from over 20 million nanodomains in polycrystalline particles. This study provides an improved understanding of the charge distribution and chemomechanical properties of polycrystalline battery materials.

     
    more » « less
  4. Abstract

    The multiscale chemomechanical interplay in lithium‐ion batteries builds up mechanical stress, provokes morphological breakdown, and leads to state of charge heterogeneity. Quantifying the interplay in complex composite electrodes with multiscale resolution constitutes a frontier challenge in precisely diagnosing the fading mechanism of batteries. In this study, hard X‐ray phase contrast tomography, capable of nanoprobing thousands of active particles at once, enables an unprecedented statistical analysis of the chemomechanical transformation of composite electrodes under fast charging conditions. The damage heterogeneity is demonstrated to prevail at all length scales, which stems from the unbalanced electron conduction and ionic diffusion, and collectively leads to the nonuniform utilization of active particles spatially and temporally. This study highlights that the statistical mapping of the chemomechanical transformation offers a diagnostic method for the particles utilization and fading, hence could improve electrode formulation for fast‐charging batteries.

     
    more » « less
  5. Abstract

    Nickel‐rich layered materials LiNi1‐x‐yMnxCoyO2are promising candidates for high‐energy‐density lithium‐ion battery cathodes. Unfortunately, they suffer from capacity fading upon cycling, especially with high‐voltage charging. It is critical to have a mechanistic understanding of such fade. Herein, synchrotron‐based techniques (including scattering, spectroscopy, and microcopy) and finite element analysis are utilized to understand the LiNi0.6Mn0.2Co0.2O2material from structural, chemical, morphological, and mechanical points of view. The lattice structural changes are shown to be relatively reversible during cycling, even when 4.9 V charging is applied. However, local disorder and strain are induced by high‐voltage charging. Nano‐resolution 3D transmission X‐ray microscopy data analyzed by machine learning methodology reveal that high‐voltage charging induced significant oxidation state inhomogeneities in the cycled particles. Regions at the surface have a rock salt–type structure with lower oxidation state and build up the impedance, while regions with higher oxidization state are scattered in the bulk and are likely deactivated during cycling. In addition, the development of micro‐cracks is highly dependent on the pristine state morphology and cycling conditions. Hollow particles seem to be more robust against stress‐induced cracks than the solid ones, suggesting that morphology engineering can be effective in mitigating the crack problem in these materials.

     
    more » « less
  6. Ni-rich layered oxides as high-capacity battery cathodes suffer from degradation at high voltages. We utilize a dry surface modification method, mechanofusion (MF), to achieve enhanced battery stability. The simplicity, high yield, and flexibility make it cost-effective and highly attractive for processing at the industrial scale. The underlying mechanisms responsible for performance improvement are unveiled by a systematic study combining multiple probes, e.g., 3D nano-tomography, spectroscopic imaging, in situ synchrotron diffraction, and finite element analysis (FEA). MF affects the bulk crystallography by introducing partially disordered structure, microstrain, and local lattice variation. Furthermore, the crack initiation and propagation pattern during delithiation are regulated and the overall mechanical fracture is reduced after such surface coating. We validate that MF can alter the bulk charging pathways. Such a synergic effect between surface modification and bulk charge distribution is fundamentally important for designing next-generation battery cathode materials. 
    more » « less
  7. Cushing, Scott (Ed.)

    This feature page is intended to let ECS award winning students and post-docs write a primary-author perspective on their field, their work, and where they believe things are going. This month we highlight the work of Muhammad Mominur Rahman, the Battery Division 2021 Student Research Award winner.

     
    more » « less
  8. Image registration is broadly used in various scenarios in which similar scenes in different images are to be aligned. However, image registration becomes challenging when the contrasts and backgrounds in the images are vastly different. This work proposes using the total variation of the difference map between two images (TVDM) as a dissimilarity metric in rigid registration. A method based on TVDM minimization is implemented for image rigid registration. The method is tested with both synthesized and real experimental data that have various noise and background conditions. The performance of the proposed method is compared with the results of other rigid registration methods. It is demonstrated that the proposed method is highly accurate and robust and outperforms other methods in all of the tests. The new algorithm provides a robust option for image registrations that are critical to many nano-scale X-ray imaging and microscopy applications. 
    more » « less
  9. Active particles in composite electrodes initially show asynchronous activity that evolves toward synchronous behavior. 
    more » « less