skip to main content


Search for: All records

Award ID contains: 1832713

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Disinfection is an essential process for both potable water and wastewater treatment plants. However, disinfection byproducts (DBPs) like trihalomethanes (THMs), haloacetonitriles (HANs), and nitrosamines (NOAs) are formed when organic matter precursors react with disinfectants such as chlorine, chloramine, and ozone. Formation of DBPs is strongly associated with the type of water source, type of disinfectant, and organic matter concentration, which can have seasonal variation. In this study, water samples were collected from 20 different intra-watershed locations, which included urban runoff (with and without the influence of unsheltered homeless populations), wastewater effluent discharges, and a large, terminal reservoir that serves as the local drinking water source. Samples were collected on dry and rainy days, which represent seasonal samples. DBP formation potential (FP) tests were conducted at consistent pH, contact time, and temperature. THMs, NOAs, and HANs were analyzed by gas chromatography-mass spectrometry (GC-MS). The FP tests performed on these water samples revealed that chlorine formed the highest THM concentrations, while THM concentrations were low for the ozone FP test as expected. Chloramine produced the greatest HAN concentrations, with dichloroacetonitrile representing the highest concentration. With respect to sample type, more DBPs were formed at the non-wastewater-impacted runoff sites as compared to the wastewater effluent discharge sites. With respect to TOC levels, rain event samples for all locations had higher TOC concentrations compared to dry sampling days. Similarly, rain event samples showed increased DBP formation; a significant amount of precursors for THMs was found in runoff waters that were influenced by wastewater effluent discharges and unsheltered homeless locations (concentration of total THMs for chlorine FP test was >200 μg/L). Therefore, urban runoff waters should be considered as potential sources of DBP precursors to drinking water source waters, and runoff water is prone to seasonal variation. 
    more » « less
  2. null (Ed.)
    Las Vegas valley has undergone significant development, thus increasing urban flooding. This study analyzes the impacts of urban development on urban flooding in the Flamingo watershed by using a watershed model. The input data includes precipitation, soil characteristics, elevation, and land cover. Urban development is incorporated through increasing percent impervious. Sub-watersheds and streamlines were delineated in ArcGIS using digital elevation model (DEM) dataset. Natural Resources Conservation Service (NRCS) curve-number method was used for the calculation of runoff. The Hydrologic Engineering Center-Hydrologic Management System (HEC-HMS) was used to estimate the discharge hydrograph. The model was calibrated through changing the curve number of the sub-basins. Two urbanization scenarios created with a 5% and 10% increase in impervious surfaces were generated. The results showed that peak discharge occurred earlier due to increase in impervious surfaces. Moreover, the total discharge volume and peak discharge for a given storm event were increasing due to increased imperviousness from urbanization. This study provides useful insight into a hydrological response to urban development that can be helpful in flood remediation. 
    more » « less