- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Biswas, Parthapratim (3)
-
Dahal, Devilal (2)
-
Elliott, Stephen R. (2)
-
Atta-Fynn, Raymond (1)
-
Limbu, Dil K. (1)
-
Warren, Hiroka (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Dahal, Devilal; Warren, Hiroka; Biswas, Parthapratim (, physica status solidi (b))The structure of the first sharp diffraction peak (FSDP) of amorphous silicon (a‐Si) near 2 Å−1is addressed with particular emphasis on the position, intensity, and width of the diffraction curve. By studying a number of continuous random network (CRN) models of a‐Si, it is shown that the position and intensity of the FSDP are primarily determined by radial atomic correlations in the amorphous network on the length scale of 15 Å. A shell‐by‐shell analysis of the contribution from different radial shells reveals that key contributions to the FSDP originate from the second and fourth radial shells in the network, which are accompanied by a background contribution from the first shell and small residual corrections from the distant radial shells. The results from numerical calculations are complemented by a phenomenological discussion of the relationship between the peaks in the structure factor in the wavevector space and the reduced pair‐correlation function in the real space. An approximate functional relation between the position of the FSDP and the average radial distance of Si atoms in the second radial shell in the network is derived, which is corroborated by numerical calculations.more » « less
-
Limbu, Dil K.; Elliott, Stephen R.; Atta-Fynn, Raymond; Biswas, Parthapratim (, Scientific Reports)Abstract X-ray diffraction, Amorphous silicon, Multi-objective optimization, Monte Carlo methods. This paper addresses a difficult inverse problem that involves the reconstruction of a three-dimensional model of tetrahedral amorphous semiconductors via inversion of diffraction data. By posing the material-structure determination as a multiobjective optimization program, it has been shown that the problem can be solved accurately using a few structural constraints, but no total-energy functionals/forces, which describe the local chemistry of amorphous networks. The approach yields highly realistic models of amorphous silicon, with no or only a few coordination defects (≤1%), a narrow bond-angle distribution of width 9–11.5°, and an electronic gap of 0.8–1.4 eV. These data-driven information-based models have been found to produce electronic and vibrational properties of a -Si that match accurately with experimental data and rival that of the Wooten-Winer-Weaire models. The study confirms the effectiveness of a multiobjective optimization approach to the structural determination of complex materials, and resolves a long-standing dispute concerning the uniqueness of a model of tetrahedral amorphous semiconductors obtained via inversion of diffraction data.more » « less
An official website of the United States government
