skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1834300

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Hurricane Patricia (2015) formed over the eastern North Pacific and is the most intense tropical cyclone (TC) on record with a maximum sustained wind speed of 95 m s−1, which presented a great forecasting challenge due to its unprecedented rapid intensification, record-breaking lifetime maximum intensity, and subsequent rapid weakening. The intensity and structure changes in Patricia were successfully simulated in a control experiment using a two-way interactive, quadruply nested version of the Weather Research and Forecasting Model with both initial and lateral boundary conditions from the Global Forecast System Final Analysis data. The successful simulation resulted from the inclusion of dissipative heating, realistic horizontal mixing length, and sea-spray-mediated heat flux. The relative contributions of these processes were assessed based on a series of ensemble-based sensitivity experiments and energetic diagnostics. Results show that dissipative heating and reduced horizontal mixing length had the most significant impacts on the intensification rate of Patricia after it reached an intensity of category 3, contributing 25.8% and 28.9% to the intensification rate and 11.7% and 14.1% to the lifetime maximum intensity, respectively. The contribution by spray-mediated heat flux increased significantly with wind speed, contributing up to 20.1% to the intensification rate and 20% to the surface energy flux under the eyewall at the wind speed of 90 m s−1. An alternative surface drag coefficient scheme and a constant surface roughness for moisture and heat were also tested and discussed via sensitivity experiments. The study provides insights into the physical processes key to successful simulations and forecasts of extremely strong TCs. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. Abstract The timescale of eyewall replacement cycle (ERC) is critical for the prediction of intensity and structure changes of tropical cyclones (TCs) with concentric eyewall (CE) structures. Previous studies have indicated that the moat width can regulate the interaction between the inner and outer eyewalls and has a salient relationship with the ERC timescale. In this study, a series of sensitivity experiments are carried out to investigate the essential mechanisms resulting in the diversity of the duration of CEs using both simple and full‐physics models. Results reveal that a larger moat can induce stronger inflow under the same inner eyewall intensity by providing a longer distance for air parcels to accelerate in the boundary layer. Thus, there is greater inward absolute vorticity flux to sustain the inner eyewall. Besides, the equivalent potential temperature (θe) budget indicates that the vertical advection and surface flux of moist entropy can overbalance the negative contribution from the horizontal advection and lead to an increasing trend ofθein the inner eyewall. This suggests that the thermodynamic process in the boundary layer is not indispensable to the inner eyewall weakening. It is also found that the contraction rate of the secondary eyewall, which directly influences the moat width, is subject to the activity of outer spiral rainbands. By directly introducing positive wind tendency outside the eyewall and indirectly promoting a vertically tilted eyewall structure, active convection in the outer region will impede or even suspend the contraction of the outer eyewall and hence extend the ERC timescale. 
    more » « less
  3. Abstract Previous observational studies have shown that the intensification rate (IR) of a tropical cyclone (TC) is often correlated with its real-time size. However, no any size parameter explicitly appears in the recent time-dependent theory of TC intensification, while the theory can still well capture the intensity evolution of simulated TCs. This study provides a detailed analysis to address how TC real-time size affects its intensification and why no size parameter explicitly appears in the theory based on the results from axisymmetric numerical simulations. The results show that the overall correlation between the TC IR and real-time size as reported in previous observational studies, in terms of both the radius of maximum wind (RMW) and the radius of 17 m s−1wind (R17), is largely related to the correlation between the IR and intensity because the size and intensity are highly interrelated. As a result, the correlation between the TC IR and size for a given intensity is rather weak. Diagnostic analysis shows that the TC real-time size (RMW and R17) has two opposing effects on intensification. A larger TC size tends to result in a higher steady-state intensity but reduce the conversion efficiency of thermodynamic energy to inner-core kinetic energy or the degree of moist neutrality of the eyewall ascent for a given intensity. The former is favorable, while the latter is unfavorable for intensification. The two effects are implicitly included in the theory and largely offset, resulting in the weak dependence of the IR on TC size for a given intensity. 
    more » « less
  4. Abstract This study investigated the dependence of the early tropical cyclone (TC) weakening rate in response to an imposed moderate environmental vertical wind shear (VWS) on the warm‐core strength and height of the TC vortex using idealized numerical simulations. Results show that the weakening of the warm core by upper‐level ventilation is the primary factor leading to the early TC weakening in response to an imposed environmental VWS. The upper‐level ventilation is dominated by eddy radial advection of the warm‐core air. The TC weakening rate is roughly proportional to the warm‐core strength and height of the initial TC vortex. The boundary‐layer ventilation shows no relationship with the early weakening rate of the TC in response to an imposed moderate VWS. The findings suggest that some previous diverse results regarding the TC weakening in environmental VWS could be partly due to the different warm‐core strengths and heights of the initial TC vortex. 
    more » « less
  5. Abstract Previous studies have investigated how the environmental vertical wind shear (VWS) may trigger the asymmetric structure in an initially axisymmetric tropical cyclone (TC) vortex and how TC intensity changes in response. In this study, the possible effect of the initial vortex asymmetric structure on the TC intensity change in response to an imposed environmental VWS is investigated based on idealized full‐physics model simulations. Results show that the effect of the asymmetric structure in the initial TC vortex can either enhance or suppress the initial weakening of the TC in response to the imposed environmental VWS. When the initial asymmetric structure is in phase of the VWS‐induced asymmetric structure, the TC weakening will be enhanced and vice versa. Our finding calls for realistic representation of initial TC asymmetric structure in numerical weather prediction models and observations to better resolve the asymmetric structure in TCs. 
    more » « less
  6. Abstract Accurate prediction of tropical cyclone (TC) intensity is quite challenging due to multiple competing processes among the TC internal dynamics and the environment. Most previous studies have evaluated the environmental effects on TC intensity change from both internal dynamics and external influence. This study quantifies the environmental effects on TC intensity change using a simple dynamically based dynamical system (DBDS) model recently developed. In this simple model, the environmental effects are uniquely represented by a ventilation parameterB, which can be expressed as multiplicative of individual ventilation parameters of the corresponding environmental effects. Their individual ventilation parameters imply their relative importance to the bulk environmental ventilation effect and thus to the TC intensity change. Six environmental factors known to affect TC intensity change are evaluated in the DBDS model using machine learning approaches with the best track data for TCs over the North Atlantic, central, eastern, and western North Pacific and the Statistical Hurricane Intensity Prediction Scheme (SHIPS) dataset during 1982–2021. Results show that the deep-layer vertical wind shear (VWS) is the dominant ventilation factor to reduce the intrinsic TC intensification rate or to drive the TC weakening, with its ventilation parameter ranging between 0.5 and 0.8 when environmental VWS between 200 and 850 hPa is larger than 8 m s−1. Other environmental factors are generally secondary, with their respective ventilation parameters over 0.8. An interesting result is the strong dependence of the environmental effects on the stage of TC development. 
    more » « less
  7. Abstract Several key issues in the simple time-dependent theories of tropical cyclone (TC) intensification developed in recent years remain, including the lack of a closure for the pressure dependence of saturation enthalpy at sea surface temperature (SST) under the eyewall and the definition of environmental conditions, such as the boundary layer enthalpy in TC environment and the TC outflow-layer temperature. In this study, some refinements to the most recent time-dependent theory of TC intensification have been accomplished to resolve those issues. The first is the construction of a functional relationship between the surface pressure under the eyewall and the TC intensity, which is derived using the cyclostrophic wind balance and calibrated using full-physics axisymmetric model simulations. The second is the definition of TC environment that explicitly includes the air–sea temperature difference. The third is the TC outflow-layer temperature parameterized as a linear function of SST based on global reanalysis data. With these refinements, the updated time-dependent theory becomes self-contained and can give both the intensity-dependent TC intensification rate (IR) and the maximum potential intensity (MPI) under given environmental thermodynamic conditions. It is shown that the pressure dependence of saturation enthalpy at SST can lead to an increase in the TC MPI and IR by about half of that induced by dissipative heating due to surface friction. Results also show that both MPI and IR increase with increasing SST, surface enthalpy exchange coefficient, environmental air–sea temperature difference, and decreasing environmental boundary layer relative humidity, but the maximum IR is insensitive to surface drag coefficient. Significance StatementA new advancement in the recent decade is the development of simple time-dependent theories of tropical cyclone (TC) intensification, which can provide quantitative understanding of TC intensity change. However, several key issues in these simple time-dependent theories remain, including the lack of a closure for the pressure dependence of saturation enthalpy at sea surface temperature under the eyewall and the definition of environmental conditions. These are resolved in this study with several refinements, which make the most recent time-dependent theory of TC intensification self-contained and practical. 
    more » « less
  8. Abstract This study revisits the issue of why tropical cyclones (TCs) develop more rapidly at lower latitudes, using ensemble axisymmetric numerical simulations and energy diagnostics based on the isentropic analysis, with the focus on the relative importance of the outflow-layer and boundary layer inertial stabilities to TC intensification and energy cycle. Results show that although lowering the outflow-layer Coriolis parameter and thus inertial stability can slightly strengthen the outflow, it does not affect the simulated TC development, whereas lowering the boundary layer Coriolis parameter largely enhances the secondary circulation and TC intensification as in the experiment with a reduced Coriolis parameter throughout the model atmosphere. This suggests that TC outflow is more likely a passive result of the convergent inflow in the boundary layer and convective updraft in the eyewall. The boundary layer inertial stability is found to control the convergent inflow in the boundary layer and depth of convection in the eyewall and thus the temperature of the energy sink in the TC heat engine, which determines the efficiency and overall mechanical output of the heat engine and thus TC intensification. It is also shown that the hypothesized isothermal and adiabatic compression legs at the downstream end of the outflow in the classical Carnot cycle are not supported in the thermodynamic cycle of the simulated TCs, implying that the hypothesized classical TC Carnot cycle is not closed. It is the theoretical maximum work of the heat engine, not the energy expenditure following the outflow downstream, that determines the mechanical work used to intensify a TC. 
    more » « less
  9. Abstract Recent studies have demonstrated the sensitivity of simulated tropical cyclone (TC) intensity to horizontal diffusion in numerical models. It is unclear whether such sensitivity comes from the horizontal diffusion in or above the boundary layer. To address this issue, both an Ooyama-type model and a full-physics model are used to conduct sensitivity experiments with reduced or enlarged horizontal mixing length (lh) in the boundary layer and/or in the free atmosphere. Results from both models show that enlarging (reducing)lhthroughout the model domain considerably reduces (increases) the TC intensification rate and quasi-steady intensity. A new finding is that changinglhabove the boundary layer imposes a much greater influence than that in the boundary layer. Largelhabove the boundary layer is found to effectively reduce the radial gradient of tangential wind inside the radius of maximum tangential wind and thus the inward flux of absolute vorticity, reducing the positive tangential wind tendency and the TC intensification rate and the steady-state intensity. In contrast, although largerlhin the boundary layer reduces the boundary layer tangential wind tendency, it also leads to the more inward-penetrated inflow and thus enhances the inward flux of absolute vorticity, which offsets part of the direct negative contribution by horizontal diffusion, making the net change in tangential wind tendency not obvious. Results from three-dimensional simulations also show that the resolved eddies contribute negatively to TC spinup whenlhis small, while its effect weakens whenlhis enhanced either in or above the boundary layer. 
    more » « less
  10. Abstract Wave breaking under strong wind conditions in tropical cyclones (TCs) can generate sea spray droplets, which, during their suspension in air, release sensible heat due to the air‐sea temperature difference while absorb sensible heat from the environment when they evaporate and release latent heat to the environment. Since the spray mass flux is a function of surface drag coefficient (CD), the effect of spray on TC evolution should depends on CDparameterization, while this has not been addressed so far. This study examines the effects of sea spray on the simulated TC evolution with two different CDparameterizations (the Weather Research and Forecasting (WRF) default scheme and the Donelan scheme). Results show that during the primary intensification stage, the TC with spray effect becomes stronger than that without spray when the WRF CDscheme is used, but becomes weaker when the Donelan CDscheme is used. This occurs because CDis maximum outside the radius of maximum wind (RMW) with the Donelan scheme, which produces relatively large spray‐mediated latent heat flux outside the RMW, which is unfavorable for TC intensification. The difference is enlarged by a feedback between spray and TC intensification involving the inertial stability and surface friction‐induced radial inflow. However, in the mature stage, the simulated TCs with spray become stronger no matter which CDscheme is used. In addition, the spray effect on the TC inner‐core size evolution also weakly depends on the drag parameterization. When CDis relatively greater outside the RMW, the inclusion of the spray effect would lead to the inner‐core size increase. 
    more » « less