skip to main content


Search for: All records

Award ID contains: 1834345

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Geological storage of carbon dioxide (CO2) in depleted gas reservoirs represents a cost-effective solution to mitigate global carbon emissions. The surface chemistry of the reservoir rock, pressure, temperature, and moisture content are critical factors that determine the CO2 adsorption capacity and storage mechanisms. Shale-gas reservoirs are good candidates for this application. However, the interactions of CO2 and organic content still need further investigation. The objectives of this paper are to (i) experimentally investigate the effect of pressure and temperature on the CO2 adsorption capacity of activated carbon, (ii) quantify the nanoscale interfacial interactions between CO2 and the activated carbon surface using Monte Carlo molecular modeling, and (iii) quantify the correlation between the adsorption isotherms of activated carbon-CO2 system and the actual carbon dioxide adsorption on shale-gas rock at different temperatures and geochemical conditions. Activated carbon is used as a proxy for kerogen. The objectives aim at obtaining a better understanding of the behavior of CO2 injection and storage into shale-gas formations.

    We performed experimental measurements and Grand Canonical Monte Carlo (GCMC) simulations of CO2 adsorption onto activated carbon. The experimental work involved measurements of the high-pressure adsorption capacity of activated carbon using pure CO2 gas. Subsequently, we performed a series of GCMC simulations to calculate CO2 adsorption capacity on activated carbon to validate the experimental results. The simulated activated carbon structure consists of graphite sheets with a distance between the sheets equal to the average actual pore size of the activated carbon sample. Adsorption isotherms were calculated and modeled for each temperature value at various pressures.

    The adsorption of CO2 on activated carbon is favorable from the energy and kinetic point of view. This is due to the presence of a wide micro to meso pore sizes that can accommodate a large amount of CO2 particles. The results of the experimental work show that excess adsorption results for gas mixtures lie in between the results for pure components. The simulation results agree with the experimental measurements. The strength of CO2 adsorption depends on both surface chemistry and pore size of activated carbon. Once strong adsorption sites within nanoscale network are established, gas adsorption even at very low pressure is governed by pore width rather than chemical composition. The outcomes of this paper provides new insights about the parameters affecting CO2 adsorption and storage in shale-gas reservoirs, which is critical for developing standalone representative models for CO2 adsorption on pure organic carbon.

     
    more » « less
  2. The characterization of petrophysical and geomechanical properties of source rocks presents inherent challenges due to lithology heterogeneity, lamination, distribution of organic matter, and presence of fractures. Organic-rich shales also present some distinctive features that make hydrocarbon production and CO2 geological storage unique in these rocks. The objective of this paper is to quantify and model the deformational behavior of carbon-based compounds due to changes of stress and pressure that happen simultaneously with gas adsorption and desorption processes. We designed an experimental procedure that consists of: (1) compaction of organic-rich grains/powder under oedometric conditions, (2) measurement of poromechanical properties in the absence of adsorption effects using helium in a triaxial cell through independent changes of confining pressure and pore pressure, (3) measurement of the adsorption strain, and stress for methane (CH4). An adsorptive-poromechanical model permits explaining the experimental data, discriminating between the strain/stress caused by poroelastic response from the adsorption-induced strain/stress, and measuring the poroelastic-sorption properties of the organic-rich compound. We applied this procedure to activated carbon and measured skeletal volumetric modulus ranging from 11.8 to 16.6 GPa and skeletal adsorption stress of ~100 MPa for CH4 at 7 MPa of adsorbate pressure. The proposed procedure and model are useful to explain and predict the unique properties of carbon-based adsorbents which can be extended to kerogen, a critical component in source rocks.

     
    more » « less