skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1834487

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Plant–animal mutualistic networks sustain terrestrial biodiversity and human food security. Global environmental changes threaten these networks, underscoring the urgency for developing a predictive theory on how networks respond to perturbations. Here, I synthesise theoretical advances towards predicting network structure, dynamics, interaction strengths and responses to perturbations. I find that mathematical models incorporating biological mechanisms of mutualistic interactions provide better predictions of network dynamics. Those mechanisms include trait matching, adaptive foraging, and the dynamic consumption and production of both resources and services provided by mutualisms. Models incorporating species traits better predict the potential structure of networks (fundamental niche), while theory based on the dynamics of species abundances, rewards, foraging preferences and reproductive services can predict the extremely dynamic realised structures of networks, and may successfully predict network responses to perturbations. From a theoretician's standpoint, model development must more realistically represent empirical data on interaction strengths, population dynamics and how these vary with perturbations from global change. From an empiricist's standpoint, theory needs to make specific predictions that can be tested by observation or experiments. Developing models using short‐term empirical data allows models to make longer term predictions of community dynamics. As more longer term data become available, rigorous tests of model predictions will improve. 
    more » « less
  2. null (Ed.)
    Abstract Empirical measurements of ecological networks such as food webs and mutualistic networks are often rich in structure but also noisy and error-prone, particularly for rare species for which observations are sparse. Focusing on the case of plant–pollinator networks, we here describe a Bayesian statistical technique that allows us to make accurate estimates of network structure and ecological metrics from such noisy observational data. Our method yields not only estimates of these quantities, but also estimates of their statistical errors, paving the way for principled statistical analyses of ecological variables and outcomes. We demonstrate the use of the method with an application to previously published data on plant–pollinator networks in the Seychelles archipelago and Kosciusko National Park, calculating estimates of network structure, network nestedness, and other characteristics. 
    more » « less