Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available August 1, 2025
-
Free, publicly-accessible full text available July 15, 2025
-
Free, publicly-accessible full text available April 14, 2025
-
We present REGLO, a novel methodology for repairing pretrained neural networks to satisfy global robustness and individual fairness properties. A neural network is said to be globally robust with respect to a given input region if and only if all the input points in the region are locally robust. This notion of global robustness also captures the notion of individual fairness as a special case. We prove that any counterexample to a global robustness property must exhibit a corresponding large gradient. For ReLU networks, this result allows us to efficiently identify the linear regions that violate a given global robustness property. By formulating and solving a suitable robust convex optimization problem, REGLO then computes a minimal weight change that will provably repair these violating linear regions.
Free, publicly-accessible full text available March 25, 2025 -
Free, publicly-accessible full text available March 1, 2025