Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Meaningfully connecting with others is critical to the well‐being of individuals. What phenomena contribute to and stem from social connection? In this paper, we integrate emerging work that uses neuroimaging and social network analysis with theories that explore the links between shared reality and social connection. We highlight recent work suggesting that the extent to which people have aligned mental processing and shared subjective construals to those around them—as shown by neural similarity—is associated with both objective and subjective social connection. On the other hand, idiosyncrasies are linked to difficulties with social connection. We conclude by suggesting how the links between shared understanding and social connection can be productively used as a framework to study psychosocial phenomena of interest.more » « less
-
Abstract Successful communication and cooperation among different members of society depends, in part, on a consistent understanding of the physical and social world. What drives this alignment in perspectives? We present evidence from two neuroimaging studies using functional magnetic resonance imaging (fMRI;N = 66 with 2145 dyadic comparisons) and electroencephalography (EEG;N = 225 with 25,200 dyadic comparisons) to show that: (1) the extent to which people’s neural responses are synchronized when viewing naturalistic stimuli is related to their personality profiles, and (2) that this effect is stronger than that of similarity in gender, ethnicity and political affiliation. The localization of the fMRI results in combination with the additional eye tracking analyses suggest that the relationship between personality similarity and neural synchrony likely reflects alignment in the interpretation of stimuli and not alignment in overt visual attention. Together, the findings suggest that similarity in psychological dispositions aligns people’s reality via shared interpretations of the external world.more » « less
-
Abstract Convergent processing of the world may be a factor that contributes to social connectedness. We use neuroimaging and network analysis to investigate the association between the social-network position (as measured by in-degree centrality) of first-year university students and their neural similarity while watching naturalistic audio-visual stimuli (specifically, videos). There were 119 students in the social-network study; 63 of them participated in the neuroimaging study. We show that more central individuals had similar neural responses to their peers and to each other in brain regions that are associated with high-level interpretations and social cognition (e.g., in the default mode network), whereas less-central individuals exhibited more variable responses. Self-reported enjoyment of and interest in stimuli followed a similar pattern, but accounting for these data did not change our main results. These findings show that neural processing of external stimuli is similar in highly-central individuals but is idiosyncratic in less-central individuals.more » « less
-
Loneliness is detrimental to well-being and is often accompanied by self-reported feelings of not being understood by other people. What contributes to such feelings in lonely people? We used functional MRI of 66 first-year university students to unobtrusively measure the relative alignment of people’s mental processing of naturalistic stimuli and tested whether lonely people actually process the world in idiosyncratic ways. We found evidence for such idiosyncrasy: Lonely individuals’ neural responses were dissimilar to those of their peers, particularly in regions of the default-mode network in which similar responses have been associated with shared perspectives and subjective understanding. These relationships persisted when we controlled for demographic similarities, objective social isolation, and individuals’ friendships with each other. Our findings raise the possibility that being surrounded by people who see the world differently from oneself, even if one is friends with them, may be a risk factor for loneliness.more » « less
-
Have you ever wondered how your friends impact how you see the world? Or how you are able to keep track of the many different people in your life? To study these questions, scientists have begun to look at people’s social networks and their brains at the same time. In this article, we introduce this area of study and discuss how scientists use ideas from both neuroscience and mathematics to examine these questions. We also highlight some recent discoveries that reveal both how our brains support our ability to socialize with others and how our relationships with other people are related to how we use our brains.more » « less
-
Abstract Recent years have seen a surge of exciting developments in the computational tools available to social neuroscientists. This paper highlights and synthesizes recent advances that have been enabled by the application of such tools, as well as methodological innovations likely to be of interest and utility to social neuroscientists, but that have been concentrated in other sub-fields. Papers in this special issue are emphasized—many of which contain instructive materials (e.g. tutorials and code) for researchers new to the highlighted methods. These include approaches for modeling social decisions, characterizing multivariate neural response patterns at varying spatial scales, using decoded neurofeedback to draw causal links between specific neural response patterns and psychological and behavioral phenomena, examining time-varying patterns of connectivity between brain regions, and characterizing the social networks in which social thought and behavior unfold in everyday life. By combining computational methods for characterizing participants’ rich social environments—at the levels of stimuli, paradigms and the webs of social relationships that surround people—with those for capturing the psychological processes that undergird social behavior and the wealth of information contained in neuroimaging datasets, social neuroscientists can gain new insights into how people create, understand and navigate their complex social worlds.more » « less
-
null (Ed.)Abstract Although social neuroscience is concerned with understanding how the brain interacts with its social environment, prevailing research in the field has primarily considered the human brain in isolation, deprived of its rich social context. Emerging work in social neuroscience that leverages tools from network analysis has begun to advance knowledge of how the human brain influences and is influenced by the structures of its social environment. In this paper, we provide an overview of key theory and methods in network analysis (especially for social systems) as an introduction for social neuroscientists who are interested in relating individual cognition to the structures of an individual’s social environments. We also highlight some exciting new work as examples of how to productively use these tools to investigate questions of relevance to social neuroscientists. We include tutorials to help with practical implementations of the concepts that we discuss. We conclude by highlighting a broad range of exciting research opportunities for social neuroscientists who are interested in using network analysis to study social systems.more » « less
-
null (Ed.)Abstract The family of neuroimaging analytical techniques known as multivoxel pattern analysis (MVPA) has dramatically increased in popularity over the past decade, particularly in social and affective neuroscience research using functional magnetic resonance imaging (fMRI). MVPA examines patterns of neural responses, rather than analyzing single voxel- or region-based values, as is customary in conventional univariate analyses. Here, we provide a practical introduction to MVPA and its most popular variants (namely, representational similarity analysis (RSA) and decoding analyses, such as classification using machine learning) for social and affective neuroscientists of all levels, particularly those new to such methods. We discuss how MVPA differs from traditional mass-univariate analyses, the benefits MVPA offers to social neuroscientists, experimental design and analysis considerations, step-by-step instructions for how to implement specific analyses in one’s own dataset and issues that are currently facing research using MVPA methods.more » « less
An official website of the United States government
