skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 AM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 1835321

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 18, 2025
  2. The Pine Island and Thwaites glaciers are the two largest contributors to sea level rise from Antarctica. Here we examine the influence of basal friction and ice shelf basal melt in determining projected losses. We examine both Weertman and Coulomb friction laws with explicit weakening as the ice thins to flotation, which many friction laws include implicitly via the effective pressure. We find relatively small differences with the choice of friction law (Weertman or Coulomb) but find losses to be highly sensitive to the rate at which the basal traction is reduced as the area upstream of the grounding line thins. Consistent with earlier work on Pine Island Glacier, we find sea level contributions from both glaciers to vary linearly with the melt volume averaged over time and space, with little influence from the spatial or temporal distribution of melt. Based on recent estimates of melt from other studies, our simulations suggest that the combined melt-driven and sea level rise contribution from both glaciers may not exceed 10 cm by 2200, although the uncertainty in model parameters allows for larger increases. We do not include other factors, such as ice shelf breakup, that might increase loss, or factors such as increased accumulation and isostatic uplift that may mitigate loss. 
    more » « less
    Free, publicly-accessible full text available May 28, 2025
  3. Abstract. We introduce a new software package called “icepack” for modeling the flow of glaciers and ice sheets.The icepack package is built on the finite element modeling library Firedrake, which uses the Unified Form Language (UFL), a domain-specific language embedded into Python for describing weak forms of partial differential equations.The diagnostic models in icepack are formulated through action principles that are specified in UFL.The components of each action functional can be substituted for different forms of the user's choosing, which makes it easy to experiment with the model physics.The action functional itself can be used to define a solver convergence criterion that is independent of the mesh and requires little tuning on the part of the user. Theicepack package includes the 2D shallow ice and shallow stream models.We have also defined a 3D hybrid model based on spectral semi-discretization of the Blatter–Pattyn equations.Finally, icepack includes a Gauss–Newton solver for inverse problems that runs substantially faster than the Broyden–Fletcher–Goldfarb–Shanno (BFGS) method often used in the glaciological literature.The overall design philosophy of icepack is to be as usable as possible for a wide a swath of the glaciological community, including both experts and novices in computational science. 
    more » « less