Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Despite strong terrain influences on the climate of the Appalachian Highlands in the eastern USA, few attempts have been made to systematically collect air and soil temperature data from summits and other high-elevation sites in this region. This paper reports on the Appalachian Highlands Environmental Monitoring (AHEM) mesoscale climate network, a series of 20 high-elevation sites recording temperature at hourly intervals from 1996 to 2008 on Appalachian summits along a 1500 km transect extending from Maine to North Carolina. Observations included air temperature, ground surface temperature, and soil temperature at 25 cm depth. Data were analyzed with respect to four issues: (1) accuracy of air temperature estimates and comparisons with previous studies; (2) relations between the altitude of the 0 °C mean annual air temperature and latitudinal position; (3) variations in frequency distributions of freeze–thaw days with latitude; and (4) the accuracy of an existing soil temperature classification scheme in the Appalachians. Analytic results include: (1) topographically informed interpolation techniques provide more accurate temperature estimates than traditional methods; (2) the elevation of the 0 °C mean annual air temperature decreases systematically with increasing latitude; (3) the frequency distributions of freeze–thaw days are related directly to latitudinal position; (4) classifications of mean annual soil temperature based on data from the 25 cm level are in general agreement with an existing U.S. Department of Agriculture soil-temperature map suggesting permafrost underlying high-elevation locations in the northern Appalachian Highlands..more » « lessFree, publicly-accessible full text available April 1, 2026
- 
            Abstract The changing thermal state of permafrost is an important indicator of climate change in northern high latitude ecosystems. The seasonally thawed soil active layer thickness (ALT) overlying permafrost may be deepening as a consequence of enhanced polar warming and widespread permafrost thaw in northern permafrost regions (NPRs). The associated increase in ALT may have cascading effects on ecological and hydrological processes that impact climate feedback. However, past NPR studies have only provided a limited understanding of the spatially continuous patterns and trends of ALT due to a lack of long-term high spatial resolution ALT data across the NPR. Using a suite of observational biophysical variables and machine learning (ML) techniques trained with availablein situALT network measurements (n= 2966 site-years), we produced annual estimates of ALT at 1 km resolution over the NPR from 2003 to 2020. Our ML-derived ALT dataset showed high accuracy (R2= 0.97) and low bias when compared within situALT observations. We found the ALT distribution to be most strongly affected by local soil properties, followed by topographic elevation and land surface temperatures. Pair-wise site-level evaluation between our data-driven ALT with Circumpolar Active Layer Monitoring data indicated that about 80% of sites had a deepening ALT trend from 2003 to 2020. Based on our long-term gridded ALT data, about 65% of the NPR showed a deepening ALT trend, while the entire NPR showed a mean deepening trend of 0.11 ± 0.35 cm yr−1[25%–75% quantile: (−0.035, 0.204) cm yr−1]. The estimated ALT trends were also sensitive to fire disturbance. Our new gridded ALT product provides an observationally constrained, updated understanding of the progression of thawing and the thermal state of permafrost in the NPR, as well as the underlying environmental drivers of these trends.more » « less
- 
            Abstract Stephen Taber's early work on ice segregation and frost heaving was far ahead of its time. His laboratory experiments regarding ice segregation led to our current understanding of frost heave by civil and geotechnical engineers building roads and other structures in cold regions. It also laid the foundation for later process‐oriented field studies of cold‐climate geomorphic processes. Taber's 1943 regional monograph on the origin and history of perennially frozen ground in Alaska, published by the Geological Society of America, was the earliest example of regional cryostratigraphy, and pioneered the regional permafrost and Quaternary studies undertaken later by Katasonov, Popov, Mackay, Péwé, Hopkins, and others. An important dimension of Taber's Alaska work was his application of knowledge gained through laboratory experimentation to the interpretation of ground‐ice exposures in the field. While S. W. Muller is widely regarded as the “father” of permafrost studies in North America, Taber is properly viewed as the “progenitor” of cryostratigraphic studies, although he is not yet widely regarded as such. This study uses archival resources to provide historical context regarding the development of Taber's monograph, to investigate details about the review and publication process it underwent, and to explore the question of why it remains undervalued.more » « less
- 
            Traditional Iñupiaq sigḷuaq are cellars excavated into permafrost for storage of large quantities of game, fish, and other foodstuffs harvested for subsistence. Permafrost provides both a cultural and regulatory ecosystem service to Arctic peoples. A cellar thermal monitoring program in Utqiaġvik (formerly Barrow), Alaska, documented catastrophic flooding, collapses, and other issues in these cellars related to warming climatic conditions, community functions, and development. This paper provides an update on the Utqiaġvik monitoring program, which was operational from 2005 to 2019. All five monitored cellars exhibited stable to warming mean annual internal temperatures over the period of observation. Two cellars flooded, another was abandoned because of sloughing walls, and two were functioning until the COVID-19 pandemic. Based on experiences gained from the 14-year Utqiaġvik monitoring program, we conduct a vulnerability assessment using the source-pathway-receptor-consequence (SPRC) model and identify several vulnerability reduction measures. We recommend the SPRC model to aid evaluation of specific vulnerabilities of cellars and other traditional frozen infrastructure, and to improve future monitoring methods and products through increased community participation. Any attempt to provide data for community-resilience decisions should start with identifying and communicating process components, thereby bridging stakeholder learning and responses (their “heuristics” in the SPRC model) and science-based knowledge.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
