skip to main content


Search for: All records

Award ID contains: 1837131

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    The Internet-of-Things, complex sensor networks, multi-agent cyber-physical systems are all examples of spatially distributed systems that continuously evolve in time. Such systems generate huge amounts of spatio-temporal data, and system designers are often interested in analyzing and discovering structure within the data. There has been considerable interest in learning causal and logical properties of temporal data using logics such as Signal Temporal Logic (STL); however, there is limited work on discovering such relations on spatio-temporal data. We propose the first set of algorithms for unsupervised learning for spatio-temporal data. Our method does automatic feature extraction from the spatio-temporal data by projecting it onto the parameter space of a parametric spatio-temporal reach and escape logic (PSTREL). We propose an agglomerative hierarchical clustering technique that guarantees that each cluster satisfies a distinct STREL formula. We show that our method generates STREL formulas of bounded description complexity using a novel decision-tree approach which generalizes previous unsupervised learning techniques for Signal Temporal Logic. We demonstrate the effectiveness of our approach on case studies from diverse domains such as urban transportation, epidemiology, green infrastructure, and air quality monitoring. 
    more » « less
  2. null (Ed.)
    Shape expressions (SEs) is a novel specification language that was recently introduced to express behavioral patterns over real-valued signals observed during the execution of cyber-physical systems. An SE is a regular expression composed of arbitrary parameterized shapes, such as lines, exponential curves, and sinusoids as atomic symbols with symbolic constraints on the shape parameters. SEs enable a natural and intuitive specification of complex temporal patterns over possibly noisy data. In this article, we propose a novel method for mining a broad and interesting fragment of SEs from time-series data using a combination of techniques from linear regression, unsupervised clustering, and learning finite automata from positive examples. The learned SE for a given dataset provides an explainable and intuitive model of the observed system behavior. We demonstrate the applicability of our approach on two case studies from different application domains and experimentally evaluate the implemented specification mining procedure. 
    more » « less
  3. null (Ed.)
    A plethora of complex dynamical systems from disordered media to biological systems exhibit mathematical characteristics (e.g., long-range dependence, self-similar and power law magnitude increments) that are well-fitted by fractional partial differential equations (PDEs). For instance, some biological systems displaying an anomalous diffusion behavior, which is characterized by a non-linear mean-square displacement relation, can be mathematically described by fractional PDEs. In general, the PDEs represent various physical laws or rules governing complex dynamical systems. Since prior knowledge about the mathematical equations describing complex dynamical systems in biology, healthcare, disaster mitigation, transportation, or environmental sciences may not be available, we aim to provide algorithmic strategies to discover the integer or fractional PDEs and their parameters from system's evolution data. Toward deciphering non-trivial mechanisms driving a complex system, we propose a data-driven approach that estimates the parameters of a fractional PDE model. We study the space-time fractional diffusion model that describes a complex stochastic process, where the magnitude and the time increments are stable processes. Starting from limited time-series data recorded while the system is evolving, we develop a fractional-order moments-based approach to determine the parameters of a generalized fractional PDE. We formulate two optimization problems to allow us to estimate the arguments of the fractional PDE. Employing extensive simulation studies, we show that the proposed approach is effective at retrieving the relevant parameters of the space-time fractional PDE. The presented mathematical approach can be further enhanced and generalized to include additional operators that may help to identify the dominant rule governing the measurements or to determine the degree to which multiple physical laws contribute to the observed dynamics. 
    more » « less
  4. null (Ed.)
    Cyber-physical systems (CPS) and the Internet-of-Things (IoT) result in a tremendous amount of generated, measured and recorded time-series data. Extracting temporal segments that encode patterns with useful information out of these huge amounts of data is an extremely difficult problem. We propose shape expressions as a declarative formalism for specifying, querying and extracting sophisticated temporal patterns from possibly noisy data. Shape expressions are regular expressions with arbitrary (linear, exponential, sinusoidal, etc.) shapes with parameters as atomic predicates and additional constraints on these parameters. We equip shape expressions with a novel noisy semantics that combines regular expression matching semantics with statistical regression. We characterize essential properties of the formalism and propose an efficient approximate shape expression matching procedure. We demonstrate the wide applicability of this technique on two case studies. 
    more » « less