skip to main content


Search for: All records

Award ID contains: 1837337

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 17, 2024
  2. Free, publicly-accessible full text available December 5, 2024
  3. Free, publicly-accessible full text available December 5, 2024
  4. Free, publicly-accessible full text available August 30, 2024
  5. Embedded and autonomous systems are increasingly integrating AI/ML features, often enabled by a hardware accelerator such as a GPU. As these workloads become increasingly demanding, but size, weight, power, and cost constraints remain unyielding, ways to increase GPU capacity are an urgent need. In this work, we provide a means by which to spatially partition the computing units of NVIDIA GPUs transparently, allowing oft-idled capacity to be reclaimed via safe and effcient GPU sharing. Our approach works on any NVIDIA GPU since 2013, and can be applied via our easy-to-use, user-space library titled libsmctrl. We back the design of our system with deep investigations into the hardware scheduling pipeline of NVIDIA GPUs. We provide guidelines for the use of our system, and demonstrate it via an object detection case study using YOLOv2. 
    more » « less
    Free, publicly-accessible full text available May 1, 2024
  6. Papadopoulos, Alessandro V. (Ed.)
    Real-time locking protocols are typically designed to reduce any priority-inversion blocking (pi-blocking) a task may incur while waiting to access a shared resource. For the multiprocessor case, a number of such protocols have been developed that ensure asymptotically optimal pi-blocking bounds under job-level fixed-priority scheduling. Unfortunately, no optimal multiprocessor real-time locking protocols are known that ensure tight pi-blocking bounds under any scheduler. This paper presents the first such protocols. Specifically, protocols are presented for mutual exclusion, reader-writer synchronization, and k-exclusion that are optimal under first-in-first-out (FIFO) scheduling when schedulability analysis treats suspension times as computation. Experiments are presented that demonstrate the effectiveness of these protocols. 
    more » « less