skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1839167

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Large tree structures are ubiquitous and real-world relational datasets often have information associated with nodes (e.g., labels or other attributes) and edges (e.g., weights or distances) that need to be communicated to the viewers. Yet, scalable, easy to read tree layouts are difficult to achieve. We consider tree layouts to be readable if they meet some basic requirements: node labels should not overlap, edges should not cross, edge lengths should be preserved, and the output should be compact. There are many algorithms for drawing trees, although very few take node labels or edge lengths into account, and none optimizes all requirements above. With this in mind, we propose a new scalable method for readable tree layouts. The algorithm guarantees that the layout has no edge crossings and no label overlaps, and optimizing one of the remaining aspects: desired edge lengths and compactness. We evaluate the performance of the new algorithm by comparison with related earlier approaches using several real-world datasets, ranging from a few thousand nodes to hundreds of thousands of nodes. Tree layout algorithms can be used to visualize large general graphs, by extracting a hierarchy of progressively larger trees. We illustrate this functionality by presenting several map-like visualizations generated by the new tree layout algorithm. 
    more » « less
  2. Bouffanais, Roland (Ed.)
    Understanding the emergence, co-evolution, and convergence of science and technology (S&T) areas offers competitive intelligence for researchers, managers, policy makers, and others. This paper presents new funding, publication, and scholarly network metrics and visualizations that were validated via expert surveys. The metrics and visualizations exemplify the emergence and convergence of three areas of strategic interest: artificial intelligence (AI), robotics, and internet of things (IoT) over the last 20 years (1998-2017). For 32,716 publications and 4,497 NSF awards, we identify their topical coverage (using the UCSD map of science), evolving co-author networks, and increasing convergence. The results support data-driven decision making when setting proper research and development (R&D) priorities; developing future S&T investment strategies; or performing effective research program assessment. 
    more » « less
  3. null (Ed.)
  4. In the information age, the ability to read and construct data visualizations becomes as important as the ability to read and write text. However, while standard definitions and theoretical frameworks to teach and assess textual, mathematical, and visual literacy exist, current data visualization literacy (DVL) definitions and frameworks are not comprehensive enough to guide the design of DVL teaching and assessment. This paper introduces a data visualization literacy framework (DVL-FW) that was specifically developed to define, teach, and assess DVL. The holistic DVL-FW promotes both the reading and construction of data visualizations, a pairing analogous to that of both reading and writing in textual literacy and understanding and applying in mathematical literacy. Specifically, the DVL-FW defines a hierarchical typology of core concepts and details the process steps that are required to extract insights from data. Advancing the state of the art, the DVL-FW interlinks theoretical and procedural knowledge and showcases how both can be combined to design curricula and assessment measures for DVL. Earlier versions of the DVL-FW have been used to teach DVL to more than 8,500 residential and online students, and results from this effort have helped revise and validate the DVL-FW presented here. 
    more » « less
  5. Rapid research progress in science and technology (S&T) and continuously shifting workforce needs exert pressure on each other and on the educational and training systems that link them. Higher education institutions aim to equip new generations of students with skills and expertise relevant to workforce participation for decades to come, but their offerings sometimes misalign with commercial needs and new techniques forged at the frontiers of research. Here, we analyze and visualize the dynamic skill (mis-)alignment between academic push, industry pull, and educational offerings, paying special attention to the rapidly emerging areas of data science and data engineering (DS/DE). The visualizations and computational models presented here can help key decision makers understand the evolving structure of skills so that they can craft educational programs that serve workforce needs. Our study uses millions of publications, course syllabi, and job advertisements published between 2010 and 2016. We show how courses mediate between research and jobs. We also discover responsiveness in the academic, educational, and industrial system in how skill demands from industry are as likely to drive skill attention in research as the converse. Finally, we reveal the increasing importance of uniquely human skills, such as communication, negotiation, and persuasion. These skills are currently underexamined in research and undersupplied through education for the labor market. In an increasingly data-driven economy, the demand for “soft” social skills, like teamwork and communication, increase with greater demand for “hard” technical skills and tools. 
    more » « less