skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1839406

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We demonstrate a method for proving precise concentration inequalities in uniformly random trees on $$n$$ vertices, where $$n\geq1$$ is a fixed positive integer. The method uses a bijection between mappings $$f\colon\{1,\ldots,n\}\to\{1,\ldots,n\}$$ and doubly rooted trees on $$n$$ vertices. The main application is a concentration inequality for the number of vertices connected to an independent set in a uniformly random tree, which is then used to prove partial unimodality of its independent set sequence. So, we give probabilistic arguments for inequalities that often use combinatorial arguments. 
    more » « less
  2. null (Ed.)