skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1840714

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Black Hat App Search Optimization (ASO) in the form of fake reviews and sockpuppet accounts, is prevalent in peer-opinion sites, e.g., app stores, with negative implications on the digital and real lives of their users. To detect and filter fraud, a growing body of research has provided insights into various aspects of fraud posting activities, and made assumptions about the working procedures of the fraudsters from online data. However, such assumptions often lack empirical evidence from the actual fraud perpetrators. To address this problem, in this paper, we present results of both a qualitative study with 18 ASO workers we recruited from 5 freelancing sites, concerning activities they performed on Google Play, and a quantitative investigation with fraud-related data collected from other 39 ASO workers. We reveal findings concerning various aspects of ASO worker capabilities and behaviors, including novel insights into their working patterns, and supporting evidence for several existing assumptions. Further, we found and report participant-revealed techniques to bypass Google-imposed verifications, concrete strategies to avoid detection, and even strategies that leverage fraud detection to enhance fraud efficacy. We report a Google site vulnerability that enabled us to infer the mobile device models used to post more than 198 million reviews in Google Play, including 9,942 fake reviews. We discuss the deeper implications of our findings, including their potential use to develop the next generation fraud detection and prevention systems. 
    more » « less
  2. The persistence of search rank fraud in online, peer-opinion systems, made possible by crowdsourcing sites and specialized fraud workers, shows that the current approach of detecting and filtering fraud is inefficient. We introduce a fraud de-anonymization approach to disincentivize search rank fraud: attribute user accounts flagged by fraud detection algorithms in online peer-opinion systems, to the human workers in crowdsourcing sites, who control them. We model fraud de-anonymization as a maximum likelihood estimation problem, and introduce UODA, an unconstrained optimization solution. We develop a graph based deep learning approach to predict ownership of account pairs by the same fraudster and use it to build discriminative fraud de-anonymization (DDA) and pseudonymous fraudster discovery algorithms (PFD). To address the lack of ground truth fraud data and its pernicious impacts on online systems that employ fraud detection, we propose the first cheating-resistant fraud de-anonymization validation protocol, that transforms human fraud workers into ground truth, performance evaluation oracles. In a user study with 16 human fraud workers, UODA achieved a precision of 91%. On ground truth data that we collected starting from other 23 fraud workers, our co-ownership predictor significantly outperformed a state-of-the-art competitor, and enabled DDA and PFD to discover tens of new fraud workers, and attribute thousands of suspicious user accounts to existing and newly discovered fraudsters. 
    more » « less