Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract BackgroundLife cycle evolution includes ecological transitions and shifts in the timing of somatic and reproductive development (heterochrony). However, heterochronic changes can be tissue‐specific, ultimately leading to the differential diversification of traits. Salamanders exhibit alternative life cycle polymorphisms involving either an aquatic to terrestrial metamorphosis (biphasic) or retention of aquatic larval traits into adulthood (paedomorphic). In this study, we used gene expression and histology to evaluate how life cycle evolution impacts temporal reproductive patterns in males of a polymorphic salamander. ResultsWe found that heterochrony shifts the distribution of androgen signaling in the integument, which is correlated with significant differences in seasonal reproductive gland development and pheromone gene expression. In the testes, androgen receptor (ar) expression does not significantly vary between morphs or across seasons. We found significant differences in the onset of spermatogenesis, but by peak breeding season the testes were the same with respect to both histology and gene expression. ConclusionThis study provides an example of how seasonal heterochronic shifts in tissue‐specificargene expression can disparately impact seasonal development and expression patterns across tissues, providing a potential mechanism for differential diversification of reproductive traits.more » « less
-
Abstract Amphibians undergo a variety of post‐embryonic transitions (PETr) that are partly governed by thyroid hormone (TH). Transformation into a terrestrial form follows an aquatic larval stage (biphasic) or precedes hatching (direct development). Some salamanders maintain larval characteristics and an aquatic lifestyle into adulthood (paedomorphosis), which obscures the conclusion of their larval period. Paedomorphic axolotls exhibit elevated TH during early development that is concomitant with transcriptional reprogramming and limb emergence. A recent perspective suggested this cryptic TH‐based PETr is uncoupled from metamorphosis in paedomorphs and concludes the larval period. This led to their question:“Are paedomorphs actual larvae?”. To clarify, paedomorphs are only considered larval in form, even though they possess some actual larval characteristics. However, we strongly agree that events during larval development inform amphibian life cycle evolution. We build upon their perspective by considering the evolution of limb emergence and metamorphosis. Limbless hatchling larval salamanders are generally associated with ponds, while limbed larvae are common to streams and preceded the evolution of direct development. Permian amphibians had limbed larvae, so their PETr was likely uncoupled from metamorphosis, equivalent to most extant biphasic and paedomorphic salamanders. Coupling of these events was likely derived in frogs and direct developing salamanders.more » « less
-
Abstract Observations on the ontogeny and diversity of salamanders provided some of the earliest evidence that shifts in developmental trajectories have made a substantial contribution to the evolution of animal forms. Since the dawn of evo‐devo there have been major advances in understanding developmental mechanisms, phylogenetic relationships, evolutionary models, and an appreciation for the impact of ecology on patterns of development (eco‐evo‐devo). Molecular phylogenetic analyses have converged on strong support for the majority of branches in the Salamander Tree of Life, which includes 764 described species. Ancestral reconstructions reveal repeated transitions between life cycle modes and ecologies. The salamander fossil record is scant, but key Mesozoic species support the antiquity of life cycle transitions in some families. Colonization of diverse habitats has promoted phenotypic diversification and sometimes convergence when similar environments have been independently invaded. However, unrelated lineages may follow different developmental pathways to arrive at convergent phenotypes. This article summarizes ecological and endocrine‐based causes of life cycle transitions in salamanders, as well as consequences to body size, genome size, and skeletal structure. Salamanders offer a rich source of comparisons for understanding how the evolution of developmental patterns has led to phenotypic diversification following shifts to new adaptive zones.more » « less
-
Abstract Patterns of phenotypic evolution can abruptly shift as species move between adaptive zones. Extant salamanders display three distinct life cycle strategies that range from aquatic to terrestrial (biphasic), to fully aquatic (paedomorphic) and to fully terrestrial (direct development). Life cycle variation is associated with changes in body form such as loss of digits, limb reduction or body elongation. However, the relationships among these traits and life cycle strategy remain unresolved. Here, we use a Bayesian modelling approach to test whether life cycle transitions by salamanders have influenced rates, optima and integration of primary locomotory structures (limbs and trunk). We show that paedomorphic salamanders have elevated rates of limb evolution with optima shifted towards smaller size and fewer digits compared to all other salamanders. Rate of hindlimb digit evolution is shown to decrease in a gradient as life cycles become more terrestrial. Paedomorphs have a higher correlation between hindlimb digit loss and increases in vertebral number, as well as reduced correlations between limb lengths. Our results support the idea that terrestrial plantigrade locomotion constrains limb evolution and, when lifted, leads to higher rates of trait diversification and shifts in optima and integration. The basic tetrapod body form of most salamanders and the independent losses of terrestrial life stages provide an important framework for understanding the evolutionary and developmental mechanisms behind major shifts in ecological zones as seen among early tetrapods during their transition from water to land.more » « less
An official website of the United States government
