skip to main content

Search for: All records

Award ID contains: 1841403

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 1, 2023
  2. The layout of public service facilities and their accessibility are important factors affecting spatial justice. Previous studies have verified the positive influence of public facilities accessibility on house prices; however, the spatial scale of the impact of various public facilities accessibility on house prices is not yet clear. This study takes transportation analysis zone of Wuhan city as the spatial unit, measure the public facilities accessibility of schools, hospitals, green space, and public transit stations with four kinds of accessibility models such as the nearest distance, real time travel cost, kernel density, and two step floating catchment area (2SFCA), and explores the multiscale effect of public services accessibility on house prices with multiscale geographically weighted regression model. The results show that the differentiated scale effect not only exists among different public facility accessibilities, but also exists in different accessibility models of the same sort of facility. The article also suggests that different facilities should adopt its appropriate accessibility model. This study provides insights into spatial heterogeneity of urban public service facilities accessibility, which will benefit decision making in equal accessibility planning and policy formulation for the layout of urban service facilities.
    Free, publicly-accessible full text available January 1, 2023
  3. Free, publicly-accessible full text available December 21, 2022
  4. Investigating the spatial distribution patterns of disease and suspected determinants could help one to understand health risks. This study investigated the potential risk factors associated with COVID-19 mortality in the continental United States. We collected death cases of COVID-19 from 3108 counties from 23 January 2020 to 31 May 2020. Twelve variables, including demographic (the population density, percentage of 65 years and over, percentage of non-Hispanic White, percentage of Hispanic, percentage of non-Hispanic Black, and percentage of Asian individuals), air toxins (PM2.5), climate (precipitation, humidity, temperature), behavior and comorbidity (smoking rate, cardiovascular death rate) were gathered and considered as potential risk factors. Based on four geographical detectors (risk detector, factor detector, ecological detector, and interaction detector) provided by the novel Geographical Detector technique, we assessed the spatial risk patterns of COVID-19 mortality and identified the effects of these factors. This study found that population density and percentage of non-Hispanic Black individuals were the two most important factors responsible for the COVID-19 mortality rate. Additionally, the interactive effects between any pairs of factors were even more significant than their individual effects. Most existing research examined the roles of risk factors independently, as traditional models are usually unable to account for themore »interaction effects between different factors. Based on the Geographical Detector technique, this study’s findings showed that causes of COVID-19 mortality were complex. The joint influence of two factors was more substantial than the effects of two separate factors. As the COVID-19 epidemic status is still severe, the results of this study are supposed to be beneficial for providing instructions and recommendations for the government on epidemic risk responses to COVID-19.« less
  5. Brazil has been severely hit by COVID-19, with rapid spatial spread of both cases and deaths. We used daily data on reported cases and deaths to understand, measure, and compare the spatiotemporal pattern of the spread across municipalities. Indicators of clustering, trajectories, speed, and intensity of the movement of COVID-19 to interior areas, combined with indices of policy measures, show that although no single narrative explains the diversity in the spread, an overall failure of implementing prompt, coordinated, and equitable responses in a context of stark local inequalities fueled disease spread. This resulted in high and unequal infection and mortality burdens. With a current surge in cases and deaths and several variants of concern in circulation, failure to mitigate the spread could further aggravate the burden.
  6. Studies on human mobility have a long history with increasingly strong interdisciplinary connections across social science, environmental science, information and technology, computer science, engineering, and health science. However, what is lacking in the current research is a synthesis of the studies to identify the evolutional pathways and future research directions. To address this gap, we conduct a systematic review of human mobility-related studies published from 1990 to 2020. Drawing on the selected publications retrieved from the Web of Science, we provide a bibliometric analysis and network visualisation using CiteSpace and VOSviewer on the number of publications and year published, authors and their countries and afflictions, citations, topics, abstracts, keywords, and journals. Our findings show that human mobility-related studies have become increasingly interdisciplinary and multi-dimensional, which have been strengthened by the use of the so-called ‘big data’ from multiple sources, the development of computer technologies, the innovation of modelling approaches, and the novel applications in various areas. Based on our synthesis of the work by top cited authors we identify four directions for future research relating to data sources, modelling methods, applications, and technologies. We advocate for more in-depth research on human mobility using multi-source big data, improving modelling methods andmore »integrating advanced technologies including artificial intelligence, and machine and deep learning to address real-world problems and contribute to social good.« less