Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Although they differ in the functionality they offer, low-level systems exhibit certain patterns of design and utilization of computing resources. In this paper we examine how modalities have emerged as a common structure in formal verification of low-level software, and explain how many recent examples naturally share common structure in the relationship between the modalities and software features they are used to reason about. We explain how the concept of a resource context (a class of system resources to reason about) naturally corresponds to families of modal operators indexed by system data, and how this naturally leads to using modal assertions to describe resource elements (data in the relevant context).more » « lessFree, publicly-accessible full text available October 13, 2026
- 
            Virtual memory management (VMM) code is a critical piece of general-purpose OS kernels, but verification of this functionality is challenging due to the complexity of the hardware interface (the page tables are updated via writes to those memory locations, using addresses which are themselves virtualized). Prior work on verification of VMM code has either only handled a single address space, or trusted significant pieces of assembly code. In this paper, we introduce a modal abstraction to describe the truth of assertions relative to a specific virtual address space: [r]P indicating that P holds in the virtual address space rooted at r. Such modal assertions allow different address spaces to refer to each other, enabling complete verification of instruction sequences manipulating multiple address spaces. Using them effectively requires working with other assertions, such as points-to assertions about memory contents — which implicitly depend on the address space they are used in. We therefore define virtual points-to assertions to definitionally mimic hardware address translation, relative to a page table root. We demonstrate our approach with challenging fragments of VMM code showing that our approach handles examples beyond what prior work can address, including reasoning about a sequence of instructions as it changes address spaces. Our results are formalized for a RISC-like fragment of x86-64 assembly in Rocq.more » « lessFree, publicly-accessible full text available October 9, 2026
- 
            Temporal logics cover important classes of system specifications dealing with system behavior over time. Despite the prevalence of long-running systems that accept repeated input and output, and thus the clear relevance of temporal specifications to training software engineers, temporal logics are rarely taught to undergraduates. We motivate and describe an approach to teaching temporal specifications and temporal reasoning indirectly through teaching students about mocking dependencies, which is widely used in software testing of large systems (and therefore of more obvious relevance to students), less notationally intimidating to students, and still teaches similar reasoning principles. We report on 7 years of experience using this indirect approach to behavioral specifications in a software quality course.more » « less
- 
            The actor model is a well-established way to approach to modularly designing and implementing concurrent and/or distributed systems, seeing increasing adoption in industry. But deductive verification tailored to actor programs remains underexplored; general concurrent logics could be used, but the logics are complex and full of features to reason about behaviors the actor model strives to avoid. We explore a relatively lightweight approach of extending a system for proving sequential program correctness with means to prove safety properties of actor programs (currently, assuming no faults). We borrow ideas from hybrid logic, a modal logic for stating assertions are true at a particular point in a model (in this case, a particular actor’s local state). To make such assertions useful, we stabilize them using rely-guarantee-style reasoning over local actor states, and only permit sending stable versions of these assertions to other actors. By carefully restricting the formation of assertions that a proposition is true at a certain actor, we avoid the need for actors to handle each others’ rely-guarantee relations explicitly. Finally, we argue that the approach requires only modest adjustments beyond applying traditional sequential techniques to actors with immutable messages, by implementing most of the logic as a Dafny library.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
