Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Synopsis Cities, through the generation of urban heat islands, provide a venue for exploring contemporary convergent evolution to climatic warming. We quantified how repeatable the evolution of heat tolerance, cold tolerance, and body size was among diverse lineages in response to urban heat islands. Our study revealed significant shifts toward higher heat tolerance and diminished cold tolerance among urban populations. We further found that the magnitude of trait divergence was significantly and positively associated with the magnitude of the urban heat island, suggesting that temperature played a major role in the observed divergence in thermal tolerance. Despite these trends, the magnitude of trait responses lagged behind environmental warming. Heat tolerance responses exhibited a deficit of 0.84°C for every 1°C increase in warming, suggesting limits on adaptive evolution and consequent adaptational lags. Other moderators were predictive of greater divergence in heat tolerance, including lower baseline tolerance and greater divergence in body size. Although terrestrial species did not exhibit systematic shifts toward larger or smaller body size, aquatic species exhibited significant shifts toward smaller body size in urban habitats. Our study demonstrates how cities can be used to address long-standing questions in evolutionary biology regarding the repeatability of evolution. Importantly, this work also shows how cities can be used as forecasting tools by quantifying adaptational lags and by developing trait-based associations with responses to contemporary warming.more » « less
-
Abstract Species are often expected to shift their distributions either poleward or upslope to evade warming climates and colonise new suitable climatic niches. However, from 18‐years of fixed transect monitoring data on 88 species of butterfly in the midwestern United States, we show that butterflies are shifting their centroids in all directions, except towards regions that are warming the fastest (southeast).Butterflies shifted their centroids at a mean rate of 4.87 km year−1. The rate of centroid shift was significantly associated with local climate change velocity (temperature by precipitation interaction), but not with mean climate change velocity throughout the species' ranges.Species tended to shift their centroids at a faster rate towards regions that are warming at slower velocities but increasing in precipitation velocity.Surprisingly, species' thermal niche breadth (range of climates butterflies experience throughout their distribution) and wingspan (often used as metric for dispersal capability) were not correlated with the rate at which species shifted their ranges.We observed high phylogenetic signal in the direction species shifted their centroids. However, we found no phylogenetic signal in the rate species shifted their centroids, suggesting less conserved processes determine the rate of range shift than the direction species shift their ranges.This research shows important signatures of multidirectional range shifts (latitudinal and longitudinal) and uniquely shows that local climate change velocities are more important in driving range shifts than the mean climate change velocity throughout a species' entire range.more » « less
-
Abstract Decades of research have illuminated the underlying ingredients that determine the scope of evolutionary responses to climate change. The field of evolutionary biology therefore stands ready to take what it has learned about influences upon the rate of adaptive evolution—such as population demography, generation time, and standing genetic variation—and apply it to assess if and how populations can evolve fast enough to “keep pace” with climate change. Here, our review highlights what the field of evolutionary biology can contribute and what it still needs to learn to provide more mechanistic predictions of the winners and losers of climate change. We begin by developing broad predictions for contemporary evolution to climate change based on theory. We then discuss methods for assessing climate‐driven contemporary evolution, including quantitative genetic studies, experimental evolution, and space‐for‐time substitutions. After providing this mechanism‐focused overview of both the evidence for evolutionary responses to climate change and more specifically, evolving to keep pace with climate change, we next consider the factors that limit actual evolutionary responses. In this context, we consider the dual role of phenotypic plasticity in facilitating but also impeding evolutionary change. Finally, we detail how a deeper consideration of evolutionary constraints can improve forecasts of responses to climate change and therefore also inform conservation and management decisions. This article is categorized under:Climate, Ecology, and Conservation > Observed Ecological ChangesClimate, Ecology, and Conservation > Extinction RiskAssessing Impacts of Climate Change > Evaluating Future Impacts of Climate Changemore » « less
-
Tomlinson, Sean (Ed.)Abstract Physiological traits are often used for vulnerability assessments of organismal responses to climate change. Trait values can change dramatically over the life cycle of organisms but are typically assessed at a single developmental stage. Reconciling ontogenetic changes in physiological traits with vulnerability assessments often reveals early life-stage vulnerabilities. The degree to which ontogenetic changes in physiological traits are due to changes in body mass over development versus stage-specific responses determines the degree to which mass can be used as a proxy for vulnerability. Here, we use the painted lady butterfly, Vanessa cardui, to test ontogenetic changes in two physiological traits, the acute thermal sensitivity of routine metabolic rate (RMR Q10) and the critical thermal maximum (CTmax). RMR Q10 generally followed ontogenetic changes in body mass, with stages characterized by smaller body mass exhibiting lower acute thermal sensitivity. However, CTmax was largely decoupled from ontogenetic changes in body mass. In contrast with trends from other studies showing increasing vulnerability among progressively earlier developmental stages, our study revealed highly erratic patterns of vulnerability across ontogeny. Specifically, we found the lowest joint-trait vulnerability (both RMR Q10 and CTmax) in the earliest developmental stage we tested (3rd instar larvae), the highest vulnerabilities in the next two developmental stages (4th and 5th instar larvae), and reduced vulnerability into the pupal and adult stages. Our study supports growing evidence of mechanistic decoupling of physiology across developmental stages and suggests that body mass is not a universal proxy for all physiological trait indicators of climate vulnerability.more » « less
-
Abstract Although there is considerable optimism surrounding adaptive evolutionary responses to global change, relatively little attention has been paid to maladaptation in this context. In this review, we consider how global change might lead populations to become maladapted. We further consider how populations can evolve to new optima, fail to evolve and therefore remain maladapted, or become further maladapted through trait‐driven or eco–evo‐driven mechanisms after being displaced from their fitness optima. Our goal is to stimulate thinking about evolution as a “double‐edged sword” that comprises both adaptive and maladaptive responses, rather than as a “silver bullet” or a purely adaptive mechanism to combat global change. We conclude by discussing how a better appreciation of environmentally driven maladaptation and maladaptive responses might improve our current understanding of population responses to global change and our ability to forecast future responses.more » « less
-
Abstract Metabolic rates of ectotherms are expected to increase with global trends of climatic warming. But the potential for rapid, compensatory evolution of lower metabolic rate in response to rising temperatures is only starting to be explored. Here, we explored rapid evolution of metabolic rate and locomotor performance in acorn‐dwelling ants (Temnothorax curvispinosus) in response to urban heat island effects. We reared ant colonies within a laboratory common garden (25°C) to generate a laboratory‐born cohort of workers and tested their acute plastic responses to temperature. Contrary to expectations, urban ants exhibited a higher metabolic rate compared with rural ants when tested at 25°C, suggesting a potentially maladaptive evolutionary response to urbanization. Urban and rural ants had similar metabolic rates when tested at 38°C, as a consequence of a diminished plastic response of the urban ants. Locomotor performance also evolved such that the running speed of urban ants was faster than rural ants under warmer test temperatures (32°C and 42°C) but slower under a cooler test temperature (22°C). The resulting specialist–generalist trade‐off and higher thermal optimum for locomotor performance might compensate for evolved increases in metabolic rate by allowing workers to more quickly scout and retrieve resources.more » « less
An official website of the United States government
