Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We synthesize current understanding of the magnitudes and methods for assessing human and wildlife exposures to poly- and perfluoroalkyl substances (PFAS). Most human exposure assessments have focused on 2 to 5 legacy PFAS, and wildlife assessments are typically limited to targeted PFAS (up to ~30 substances). However, shifts in chemical production are occurring rapidly, and targeted methods for detecting PFAS have not kept pace with these changes. Total fluorine measurements complemented by suspect screening using high-resolution mass spectrometry are thus emerging as essential tools for PFAS exposure assessment. Such methods enable researchers to better understand contributions from precursor compounds that degrade into terminal perfluoroalkyl acids. Available data suggest that diet is the major human exposure pathway for some PFAS, but there is large variability across populations and PFAS compounds. Additional data on total fluorine in exposure media and the fraction of unidentified organofluorine are needed. Drinking water has been established as the major exposure source in contaminated communities. As water supplies are remediated, for the general population, exposures from dust, personal care products, indoor environments, and other sources may be more important. A major challenge for exposure assessments is the lack of statistically representative population surveys. For wildlife, bioaccumulation processes differ substantially between PFAS and neutral lipophilic organic compounds, prompting a reevaluation of traditional bioaccumulation metrics. There is evidence that both phospholipids and proteins are important for the tissue partitioning and accumulation of PFAS. New mechanistic models for PFAS bioaccumulation are being developed that will assist in wildlife risk evaluations. Environ Toxicol Chem 2021;40:631–657. © 2020 SETAC Abstract Methods for assessing human and wildlife exposures to per- and polyfluoroalkyl substances are reviewed along with current understanding of exposure sources and pathways.more » « less
-
Because of their ubiquitous presence in the environment and their potential toxicity to human health, per- and polyfluoroalkyl substances (PFAS) have drawn great attention over the past few years. Current conventional drinking and wastewater treatment approaches fail to effectively remove these substances from aqueous media, motivating researchers to focus on using sorption, a simple and cost-effective method, to remove PFAS from contaminated water. This work aims to summarize and critically evaluate the sorption capacities of PFAS by a variety of natural and engineered sorbents, including carbonaceous materials, ion exchange resins, polymers, different natural materials and other engineered sorbent materials. The specific focus of this review is on the performance of these different materials in removing short-chain PFAS due to their high solubility and mobility in aqueous media. A treatment train optimizing the removal of these short-chain substances from water is proposed, and challenges and future recommendations are discussed.more » « less
-
Per- and polyfluoroalkyl substances (PFAS) are a class of synthetic chemicals colloquially known as “forever chemicals” because of their high persistence. PFAS have been detected in the blood, liver, kidney, heart, muscle and brain of various species. Although brain is not a dominant tissue for PFAS accumulation compared to blood and liver, adverse effects of PFAS on brain functions have been identified. Here, we review studies related to the absorption, accumulation, distribution and toxicity of PFAS in the brain. We summarize evidence on two potential mechanisms of PFAS entering the brain: initiating blood–brain barrier (BBB) disassembly through disrupting tight junctions and relying on transporters located at the BBB. PFAS with diverse structures and properties enter and accumulate in the brain with varying efficiencies. Compared to long-chain PFAS, short-chain PFAS may not cross cerebral barriers effectively. According to biomonitoring studies and PFAS exposure experiments, PFAS can accumulate in the brain of humans and wildlife species. With respect to the distribution of PFAS in specific brain regions, the brain stem, hippocampus, hypothalamus, pons/medulla and thalamus are dominant for PFAS accumulation. The accumulation and distribution of PFAS in the brain may lead to toxic effects in the central nervous system (CNS), including PFAS-induced behavioral and cognitive disorders. The specific mechanisms underlying such PFAS-induced neurotoxicity remain to be explored, but two major potential mechanisms based on current understanding are PFAS effects on calcium homeostasis and neurotransmitter alterations in neurons. Based on the information available about PFAS uptake, accumulation, distribution and impacts on the brain, PFAS have the potential to enter and accumulate in the brain at varying levels. The balance of existing studies shows there is some indication of risk in animals, while the human evidence is mixed and warrants further scrutiny.more » « less
-
Despite decades of research on per- and polyfluoroalkyl substances (PFAS), fundamental obstacles remain to addressing worldwide contamination by these chemicals and their associated impacts on environmental quality and health. Here, we propose six urgent questions relevant to science, technology, and policy that must be tackled to address the “PFAS problem”: (1) What are the global production volumes of PFAS, and where are PFAS used? (2) Where are the unknown PFAS hotspots in the environment? (3) How can we make measuring PFAS globally accessible? (4) How can we safely manage PFAS-containing waste? (5) How do we understand and describe the health effects of PFAS exposure? (6) Who pays the costs of PFAS contamination? The importance of each question and barriers to progress are briefly described, and several potential paths forward are proposed. Given the diversity of PFAS and their uses, the extreme persistence of most PFAS, the striking ongoing lack of fundamental information, and the inequity of the health and environmental impacts from PFAS contamination, there is a need for scientific and regulatory communities to work together, with cooperation from PFAS-related industries, to fill in critical data gaps and protect human health and the environment.more » « less
-
null (Ed.)Per- and polyfluoroalkyl substances (PFAS) are a class of synthetic organic substances with diverse structures, properties, uses, bioaccumulation potentials and toxicities. Despite this high diversity, all PFAS are alike in that they contain perfluoroalkyl moieties that are extremely resistant to environmental and metabolic degradation. The vast majority of PFAS are therefore either non-degradable or transform ultimately into stable terminal transformation products (which are still PFAS). Under the European chemicals regulation this classifies PFAS as very persistent substances (vP). We argue that this high persistence is sufficient concern for their management as a chemical class, and for all “non-essential” uses of PFAS to be phased out. The continual release of highly persistent PFAS will result in increasing concentrations and increasing probabilities of the occurrence of known and unknown effects. Once adverse effects are identified, the exposure and associated effects will not be easily reversible. Reversing PFAS contamination will be technically challenging, energy intensive, and costly for society, as is evident in the efforts to remove PFAS from contaminated land and drinking water sources.more » « less
-
null (Ed.)Per- and polyfluoroalkyl substances (PFAS) are of concern because of their high persistence (or that of their degradation products) and their impacts on human and environmental health that are known or can be deduced from some well-studied PFAS. Currently, many different PFAS (on the order of several thousands) are used in a wide range of applications, and there is no comprehensive source of information on the many individual substances and their functions in different applications. Here we provide a broad overview of many use categories where PFAS have been employed and for which function; we also specify which PFAS have been used and discuss the magnitude of the uses. Despite being non-exhaustive, our study clearly demonstrates that PFAS are used in almost all industry branches and many consumer products. In total, more than 200 use categories and subcategories are identified for more than 1400 individual PFAS. In addition to well-known categories such as textile impregnation, fire-fighting foam, and electroplating, the identified use categories also include many categories not described in the scientific literature, including PFAS in ammunition, climbing ropes, guitar strings, artificial turf, and soil remediation. We further discuss several use categories that may be prioritised for finding PFAS-free alternatives. Besides the detailed description of use categories, the present study also provides a list of the identified PFAS per use category, including their exact masses for future analytical studies aiming to identify additional PFAS.more » « less
An official website of the United States government
