Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The generalized singular value decomposition (GSVD) is a valuable tool that has many applications in computational science. However, computing the GSVD for large‐scale problems is challenging. Motivated by applications in hyper‐differential sensitivity analysis (HDSA), we propose new randomized algorithms for computing the GSVD which use randomized subspace iteration and weighted QR factorization. Detailed error analysis is given which provides insight into the accuracy of the algorithms and the choice of the algorithmic parameters. We demonstrate the performance of our algorithms on test matrices and a large‐scale model problem where HDSA is used to study subsurface flow.more » « less
-
Summary Uncertainty quantification for linear inverse problems remains a challenging task, especially for problems with a very large number of unknown parameters (e.g., dynamic inverse problems) and for problems where computation of the square root and inverse of the prior covariance matrix are not feasible. This work exploits Krylov subspace methods to develop and analyze new techniques for large‐scale uncertainty quantification in inverse problems. In this work, we assume that generalized Golub‐Kahan‐based methods have been used to compute an estimate of the solution, and we describe efficient methods to explore the posterior distribution. In particular, we use the generalized Golub‐Kahan bidiagonalization to derive an approximation of the posterior covariance matrix, and we provide theoretical results that quantify the accuracy of the approximate posterior covariance matrix and of the resulting posterior distribution. Then, we describe efficient methods that use the approximation to compute measures of uncertainty, including the Kullback‐Liebler divergence. We present two methods that use the preconditioned Lanczos algorithm to efficiently generate samples from the posterior distribution. Numerical examples from dynamic photoacoustic tomography demonstrate the effectiveness of the described approaches.more » « less
-
Free, publicly-accessible full text available September 30, 2026
-
Free, publicly-accessible full text available August 28, 2026
-
Free, publicly-accessible full text available June 30, 2026
-
This paper expands the analysis of randomized low-rank approximation beyond the Gaussian distribution to four classes of random matrices: (1) independent sub-Gaussian entries, (2) independent sub-Gaussian columns, (3) independent bounded columns, and (4) independent columns with bounded second moment. Using a novel interpretation of the low-rank approximation error involving sample covariance matrices, we provide insight into the requirements of a good random matrix for randomized low-rank approximations. Although our bounds involve unspecified absolute constants (a consequence of underlying nonasymptotic theory of random matrices), they allow for qualitative comparisons across distributions. The analysis offers some details on the minimal number of samples (the number of columns of the random matrix ) and the error in the resulting low-rank approximation. We illustrate our analysis in the context of the randomized subspace iteration method as a representative algorithm for low-rank approximation; however, all the results are broadly applicable to other low-rank approximation techniques. We conclude our discussion with numerical examples using both synthetic and real-world test matrices.more » « lessFree, publicly-accessible full text available March 31, 2026
-
Inverse problems constrained by partial differential equations (PDEs) play a critical role in model development and calibration. In many applications, there are multiple uncertain parameters in a model which must be estimated. Although the Bayesian formulation is attractive for such problems, computational cost and high dimensionality frequently prohibit a thorough exploration of the parametric uncertainty. A common approach is to reduce the dimension by fixing some parameters (which we will call auxiliary parameters) to a best estimate and use techniques from PDE-constrained optimization to approximate properties of the Bayesian posterior distribution. For instance, the maximum a posteriori probability (MAP) and the Laplace approximation of the posterior covariance can be computed. In this article, we propose using hyperdifferential sensitivity analysis (HDSA) to assess the sensitivity of the MAP point to changes in the auxiliary parameters. We establish an interpretation of HDSA as correlations in the posterior distribution. Our proposed framework is demonstrated on the inversion of bedrock topography for the Greenland ice-sheet with uncertainties arising from the basal friction coefficient and climate forcing (ice accumulation rate).more » « less
An official website of the United States government
