skip to main content


Search for: All records

Award ID contains: 1845833

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Signal acquisition is a crucial step in Global Navigation Satellite System (GNSS) receivers, which is typically solved by maximizing the so-called Cross-Ambiguity Function (CAF) as a hypothesis testing problem. This article proposes to use deep learning models to perform such acquisition, whereby the CAF is fed to a data-driven classifier that outputs binary class posteriors. The class posteriors are used to compute a Bayesian hypothesis test to statistically decide the presence or absence of a GNSS signal. The versatility and computational affordability of the proposed method are addressed by splitting the CAF into smaller overlapping sections, which are fed to a bank of parallel classifiers whose probabilistic results are optimally fused to provide a so-called probability ratio map from which acquisition is decided. Additionally, the article shows how noncoherent integration schemes are enabled through optimal data fusion, with the goal of increasing the resulting classifier accuracy. The article provides simulation results showing that the proposed data-driven method outperforms current CAF maximization strategies, enabling enhanced acquisition at medium-to-high carrier-to-noise density ratios. 
    more » « less
  2. In this paper we present a hybrid neural network augmented physics-based modeling (APBM) framework for Bayesian nonlinear latent space estimation. The proposed APBM strategy allows for model adaptation when new operation conditions come into play or the physics-based model is insufficient (or incomplete) to properly describe the latent phenomenon. One advantage of the APBMs and our estimation procedure is the capability of maintaining the physical interpretability of estimated states. Furthermore, we propose a constraint filtering approach to control the neural network contributions to the overall model. We also exploit assumed density filtering techniques and cubature integration rules to present a flexible estimation strategy that can easily deal with nonlinear models and high-dimensional latent spaces. Finally, we demonstrate the efficacy of our methodology by leveraging a target tracking scenario with nonlinear and incomplete measurement and acceleration models, respectively. 
    more » « less