Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Data-driven analysis and monitoring of complex dynamical systems have been gaining popularity due to various reasons like ubiquitous sensing and advanced computation capabilities. A key rationale is that such systems inherently have high dimensionality and feature complex subsystem interactions due to which majority of the first-principle based methods become insufficient. We explore the family of a recently proposed probabilistic graphical modeling technique, called spatiotemporal pattern network (STPN) in order to capture the Granger causal relationships among observations in a dynamical system. We also show that this technique can be used for anomaly detection and root-cause analysis for real-life dynamical systems. In this context, we introduce the notion of Granger-STPN (G-STPN) inspired by the notion of Granger causality and introduce a new nonparametric technique to detect causality among dynamical systems observations. We experimentally validate our framework for detecting anomalies and analyzing root causes in a robotic arm platform and obtain superior results compared to when other causality metrics were used in previous frameworks.more » « less
-
Abstract Many existing traffic signal controllers are either simple adaptive controllers based on sensors placed around traffic intersections, or optimized by traffic engineers on a fixed schedule. Optimizing traffic controllers is time consuming and usually require experienced traffic engineers. Recent research has demonstrated the potential of using deep reinforcement learning (DRL) in this context. However, most of the studies do not consider realistic settings that could seamlessly transition into deployment. In this paper, we propose a DRL-based adaptive traffic signal control framework that explicitly considers realistic traffic scenarios, sensors, and physical constraints. In this framework, we also propose a novel reward function that shows significantly improved traffic performance compared to the typical baseline pre-timed and fully-actuated traffic signals controllers. The framework is implemented and validated on a simulation platform emulating real-life traffic scenarios and sensor data streams.more » « less
-
Free, publicly-accessible full text available May 6, 2026
An official website of the United States government
