skip to main content


Search for: All records

Award ID contains: 1845969

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Data-driven analysis and monitoring of complex dynamical systems have been gaining popularity due to various reasons like ubiquitous sensing and advanced computation capabilities. A key rationale is that such systems inherently have high dimensionality and feature complex subsystem interactions due to which majority of the first-principle based methods become insufficient. We explore the family of a recently proposed probabilistic graphical modeling technique, called spatiotemporal pattern network (STPN) in order to capture the Granger causal relationships among observations in a dynamical system. We also show that this technique can be used for anomaly detection and root-cause analysis for real-life dynamical systems. In this context, we introduce the notion of Granger-STPN (G-STPN) inspired by the notion of Granger causality and introduce a new nonparametric technique to detect causality among dynamical systems observations. We experimentally validate our framework for detecting anomalies and analyzing root causes in a robotic arm platform and obtain superior results compared to when other causality metrics were used in previous frameworks.

     
    more » « less
  2. Abstract

    Many existing traffic signal controllers are either simple adaptive controllers based on sensors placed around traffic intersections, or optimized by traffic engineers on a fixed schedule. Optimizing traffic controllers is time consuming and usually require experienced traffic engineers. Recent research has demonstrated the potential of using deep reinforcement learning (DRL) in this context. However, most of the studies do not consider realistic settings that could seamlessly transition into deployment. In this paper, we propose a DRL-based adaptive traffic signal control framework that explicitly considers realistic traffic scenarios, sensors, and physical constraints. In this framework, we also propose a novel reward function that shows significantly improved traffic performance compared to the typical baseline pre-timed and fully-actuated traffic signals controllers. The framework is implemented and validated on a simulation platform emulating real-life traffic scenarios and sensor data streams.

     
    more » « less
  3. In distributed machine learning, where agents collaboratively learn from diverse private data sets, there is a fundamental tension between consensus and optimality . In this paper, we build on recent algorithmic progresses in distributed deep learning to explore various consensus-optimality trade-offs over a fixed communication topology. First, we propose the incremental consensus -based distributed stochastic gradient descent (i-CDSGD) algorithm, which involves multiple consensus steps (where each agent communicates information with its neighbors) within each SGD iteration. Second, we propose the generalized consensus -based distributed SGD (g-CDSGD) algorithm that enables us to navigate the full spectrum from complete consensus (all agents agree) to complete disagreement (each agent converges to individual model parameters). We analytically establish convergence of the proposed algorithms for strongly convex and nonconvex objective functions; we also analyze the momentum variants of the algorithms for the strongly convex case. We support our algorithms via numerical experiments, and demonstrate significant improvements over existing methods for collaborative deep learning. 
    more » « less