skip to main content

Search for: All records

Award ID contains: 1846676

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 1, 2024
  2. Free, publicly-accessible full text available April 1, 2024
  3. Free, publicly-accessible full text available April 1, 2024
  4. Free, publicly-accessible full text available December 1, 2023
  5. Free, publicly-accessible full text available October 1, 2023
  6. Abstract Laser powder bed fusion (L-PBF) additive manufacturing (AM) is an effective method of fabricating nickel–titanium (NiTi) shape memory alloys (SMAs) with complex geometries, unique functional properties, and tailored material compositions. However, with the increase of Ni content in NiTi powder feedstock, the ability to produce high-quality parts is notably reduced due to the emergence of macroscopic defects such as warpage, elevated edge/corner, delamination, and excessive surface roughness. This study explores the printability of a nickel-rich NiTi powder, where printability refers to the ability to fabricate macro-defect-free parts. Specifically, single track experiments were first conducted to select key processing parameter settings for cubic specimen fabrication. Machine learning classification techniques were implemented to predict the printable space. The reliability of the predicted printable space was verified by further cubic specimens fabrication, and the relationship between processing parameters and potential macro-defect modes was investigated. Results indicated that laser power was critical to the printability of high Ni content NiTi powder. In the low laser power setting (P < 100 W), the printable space was relatively wider with delamination as the main macro-defect mode. In the sub-high laser power condition (100 W ≤ P ≤ 200 W), the printable space was narrowed tomore »a low hatch spacing region with macro-defects of warpage, elevated edge/corner, and delamination happened at different scanning speeds and hatch spacing combinations. The rough surface defect emerged when further increasing the laser power (P > 200 W), leading to a further narrowed printable space.« less
  7. Abstract Modeling and simulation for additive manufacturing (AM) are critical enablers for understanding process physics, conducting process planning and optimization, and streamlining qualification and certification. It is often the case that a suite of hierarchically linked (or coupled) simulation models is needed to achieve the above tasks, as the entirety of the complex physical phenomena relevant to the understanding of process-structure-property-performance relationships in the context of AM precludes the use of a single simulation framework. In this study using a Bayesian network approach, we address the important problem of conducting uncertainty quantification (UQ) analysis for multiple hierarchical models to establish process-microstructure relationships in laser powder bed fusion (LPBF) AM. More significantly, we present the framework to calibrate and analyze simulation models that have experimentally unmeasurable variables, which are quantities of interest predicted by an upstream model and deemed necessary for the downstream model in the chain. We validate the framework using a case study on predicting the microstructure of a binary nickel-niobium alloy processed using LPBF as a function of processing parameters. Our framework is shown to be able to predict segregation of niobium with up to 94.3% prediction accuracy on test data.