Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract BackgroundWoody biomass has been considered as a promising feedstock for biofuel production via thermochemical conversion technologies such as fast pyrolysis. Extensive Life Cycle Assessment studies have been completed to evaluate the carbon intensity of woody biomass-derived biofuels via fast pyrolysis. However, most studies assumed that woody biomass such as forest residues is a carbon–neutral feedstock like annual crops, despite a distinctive timeframe it takes to grow woody biomass. Besides, few studies have investigated the impacts of forest dynamics and the temporal effects of carbon on the overall carbon intensity of woody-derived biofuels. This study addressed such gaps by developing a life-cycle carbon analysis framework integrating dynamic modeling for forest and biorefinery systems with a time-based discounted Global Warming Potential (GWP) method developed in this work. The framework analyzed dynamic carbon and energy flows of a supply chain for biofuel production from pine residues via fast pyrolysis. ResultsThe mean carbon intensity of biofuel given by Monte Carlo simulation across three pine growth cases ranges from 40.8–41.2 g CO2e MJ−1(static method) to 51.0–65.2 g CO2e MJ−1(using the time-based discounted GWP method) when combusting biochar for energy recovery. If biochar is utilized as soil amendment, the carbon intensity reduces to 19.0–19.7 g CO2e MJ−1(static method) and 29.6–43.4 g CO2e MJ−1in the time-based method. Forest growth and yields (controlled by forest management strategies) show more significant impacts on biofuel carbon intensity when the temporal effect of carbon is taken into consideration. Variation in forest operations and management (e.g., energy consumption of thinning and harvesting), on the other hand, has little impact on the biofuel carbon intensity. ConclusionsThe carbon temporal effect, particularly the time lag of carbon sequestration during pine growth, has direct impacts on the carbon intensity of biofuels produced from pine residues from a stand-level pine growth and management point of view. The carbon implications are also significantly impacted by the assumptions of biochar end-of-life cases and forest management strategies.more » « less
- 
            Artificial intelligence (AI) is an emerging technology that has great potential in reducing energy consumption, environmental burdens, and operational risks of chemical production. However, large-scale applications of AI are still limited. One barrier is the lack of quantitative understandings of the potential benefits and risks of different AI applications. This study reviewed relevant AI literature and categorized those case studies by application types, impact categories, and application modes. Most studies assessed the energy, economic, and safety implications of AI applications, while few of them have evaluated the environmental impacts of AI, given the large data gaps and difficulties in choosing appropriate assessment methods. Based on the reviewed case studies in the chemical industry, we proposed a conceptual framework that encompasses approaches from industrial ecology, economics, and engineering to guide the selection of performance indicators and evaluation methods for a holistic assessment of AI's impacts. This framework could be a valuable tool to support the decision-making related to AI in the fundamental research and practical production of chemicals. Although this study focuses on the chemical industry, the insights of the literature review and the proposed framework could be applied to AI applications in other industries and broad industrial ecology fields. In the end, this study highlights future research directions for addressing the data challenges in assessing AI's impacts and developing AI-enhanced tools to support the sustainable development of the chemical industry.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
