skip to main content


Search for: All records

Award ID contains: 1847436

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    A bidirectional brain interface with both “write” and “read” functions can be an important tool for fundamental studies and potential clinical treatments for neurological diseases. Herein, a miniaturized multifunctional fiber‐based optoacoustic emitter (mFOE) is reported thatintegrates simultaneous optoacoustic stimulation for “write” and electrophysiology recording of neural circuits for “read”. Because of the intrinsic ability of neurons to respond to acoustic wave, there is no requirement of the viral transfection. The orthogonality between optoacoustic waves and electrical field provides a solution to avoid the interference between electrical stimulation and recording. The stimulation function of the mFOE is first validated in cultured ratcortical neurons using calcium imaging. In vivo application of mFOE for successful simultaneous optoacoustic stimulation and electrical recording of brain activities is confirmed in mouse hippocampus in both acute and chronical applications up to 1 month. Minor brain tissue damage is confirmed after these applications. The capability of simultaneous neural stimulation and recording enabled by mFOE opens up new possibilities for the investigation of neural circuits and brings new insights into the study of ultrasound neurostimulation.

     
    more » « less
  2. Abstract

    Small‐scale robots capable of remote active steering and navigation offer great potential for biomedical applications. However, the current design and manufacturing procedure impede their miniaturization and integration of various diagnostic and therapeutic functionalities. Herein, submillimeter fiber robots that can integrate navigation, sensing, and modulation functions are presented. These fiber robots are fabricated through a scalable thermal drawing process at a speed of 4 meters per minute, which enables the integration of ferromagnetic, electrical, optical, and microfluidic composite with an overall diameter of as small as 250 µm and a length of as long as 150 m. The fiber tip deflection angle can reach up to 54ounder a uniform magnetic field of 45 mT. These fiber robots can navigate through complex and constrained environments, such as artificial vessels and brain phantoms. Moreover, Langendorff mouse hearts model, glioblastoma micro platforms, and in vivo mouse models are utilized to demonstrate the capabilities of sensing electrophysiology signals and performing a localized treatment. Additionally, it is demonstrated that the fiber robots can serve as endoscopes with embedded waveguides. These fiber robots provide a versatile platform for targeted multimodal detection and treatment at hard‐to‐reach locations in a minimally invasive and remotely controllable manner.

     
    more » « less
  3. Abstract

    Understanding the cytoarchitecture and wiring of the brain requires improved methods to record and stimulate large groups of neurons with cellular specificity. This requires miniaturized neural interfaces that integrate into brain tissue without altering its properties. Existing neural interface technologies have been shown to provide high-resolution electrophysiological recording with high signal-to-noise ratio. However, with single implantation, the physical properties of these devices limit their access to one, small brain region. To overcome this limitation, we developed a platform that provides three-dimensional coverage of brain tissue through multisite multifunctional fiber-based neural probes guided in a helical scaffold. Chronic recordings from the spatially expandable fiber probes demonstrate the ability of these fiber probes capturing brain activities with a single-unit resolution for long observation times. Furthermore, usingThy1-ChR2-YFPmice we demonstrate the application of our probes in simultaneous recording and optical/chemical modulation of brain activities across distant regions. Similarly, varying electrographic brain activities from different brain regions were detected by our customizable probes in a mouse model of epilepsy, suggesting the potential of using these probes for the investigation of brain disorders such as epilepsy. Ultimately, this technique enables three-dimensional manipulation and mapping of brain activities across distant regions in the deep brain with minimal tissue damage, which can bring new insights for deciphering complex brain functions and dynamics in the near future.

     
    more » « less
  4. Abstract

    Highly stretchable fiber sensors have attracted significant interest recently due to their applications in wearable electronics, human–machine interfaces, and biomedical implantable devices. Here, a scalable approach for fabricating stretchable multifunctional electrical and optical fiber sensors using a thermal drawing process is reported. The fiber sensors can sustain at least 580% strain and up to 750% strain with a helix structure. The electrical fiber sensor simultaneously exhibits ultrahigh stretchability (400%), high gauge factors (≈1960), and excellent durability during 1000 stretching and bending cycles. It is also shown that the stretchable step‐index optical fibers facilitate detection of bending and stretching deformation through changes in the light transmission. By combining both electrical and optical detection schemes, multifunctional fibers can be used for quantifying and distinguishing multimodal deformations such as bending and stretching. The fibers’ utility and functionality in sensing and control applications are demonstrated in a smart glove for controlling a virtual hand model, a wrist brace for wrist motion tracking, fiber meshes for strain mapping, and real‐time monitoring of multiaxial expansion and shrinkage of porcine bladders. These results demonstrate that the fiber sensors can be promising candidates for smart textiles, robotics, prosthetics, and biomedical implantable devices.

     
    more » « less
  5. Abstract

    With the recent development of wearable electronics and smart textiles, flexible sensor technology is gaining increasing attention. Compared to flexible film‐based sensors, multimaterial fiber‐based technology offers unique advantages due to the breathability, durability, wear resistance, and stretchability in fabric structures. Despite the significant progress made in the fabrication and application of fiber‐based sensors, none of the existing fiber technologies allow for fully distributed pressure or temperature sensing. Herein, the design and fabrication of thermally drawn multi‐material fibers that offer distributed temperature and pressure measurement capability is reported. Thermoplastic materials, thermoplastic elastomers, and metal electrodes are successfully co‐drawn in one fiber. The embedded electrodes inside the fibers form a parallel wire transmission line, and the local characteristic impedance is designed to change with the temperature or pressure. The electrical frequency domain reflectometry is used to interrogate the impedance change along the fiber and provides information with high spatial resolution. The two types of fibers reported in this manuscript have a pressure sensitivity of 4 kPa and a temperature sensitivity of 2 °C, respectively. This work can pave the road for development of functional fibers and textiles for pressure and temperature mapping.

     
    more » « less
  6. null (Ed.)
    Abstract Immune checkpoint blockade antibodies have promising clinical applications but suffer from disadvantages such as severe toxicities and moderate patient–response rates. None of the current delivery strategies, including local administration aiming to avoid systemic toxicities, can sustainably supply drugs over the course of weeks; adjustment of drug dose, either to lower systemic toxicities or to augment therapeutic response, is not possible. Herein, we develop an implantable miniaturized device using electrode-embedded optical fibers with both local delivery and measurement capabilities over the course of a few weeks. The combination of local immune checkpoint blockade antibodies delivery via this device with photodynamic therapy elicits a sustained anti-tumor immunity in multiple tumor models. Our device uses tumor impedance measurement for timely presentation of treatment outcomes, and allows modifications to the delivered drugs and their concentrations, rendering this device potentially useful for on-demand delivery of potent immunotherapeutics without exacerbating toxicities. 
    more » « less
  7. null (Ed.)
  8. null (Ed.)