skip to main content

Search for: All records

Award ID contains: 1847736

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Over the past two decades (2000–2020), volcano infrasound (acoustic waves with frequencies less than 20 Hz propagating in the atmosphere) has evolved from an area of academic research to a useful monitoring tool. As a result, infrasound is routinely used by volcano observatories around the world to detect, locate, and characterize volcanic activity. It is particularly useful in confirming subaerial activity and monitoring remote eruptions, and it has shown promise in forecasting paroxysmal activity at open-vent systems. Fundamental research on volcano infrasound is providing substantial new insights on eruption dynamics and volcanic processes and will continue to do so over the next decade. The increased availability of infrasound sensors will expand observations of varied eruption styles, and the associated increase in data volume will make machine learning workflows more feasible. More sophisticated modeling will be applied to examine infrasound source and propagation effects from local to global distances, leading to improved infrasound-derived estimates of eruption properties. Future work will use infrasound to detect, locate, and characterize moving flows, such as pyroclastic density currents, lahars, rockfalls, lava flows, and avalanches. Infrasound observations will be further integrated with other data streams, such as seismic, ground- and satellite-based thermal and visual imagery, geodetic,more »lightning, and gas data. The volcano infrasound community should continue efforts to make data and codes accessible and to improve diversity, equity, and inclusion in the field. In summary, the next decade of volcano infrasound research will continue to advance our understanding of complex volcano processes through increased data availability, sensor technologies, enhanced modeling capabilities, and novel data analysis methods that will improve hazard detection and mitigation.« less
    Free, publicly-accessible full text available May 1, 2023
  2. Free, publicly-accessible full text available April 28, 2023
  3. Free, publicly-accessible full text available April 16, 2023
  4. Abstract Volcanic eruption source parameters may be estimated from acoustic pressure recordings dominant at infrasonic frequencies (< 20 Hz), yet uncertainties may be high due in part to poorly understood propagation dynamics. Linear acoustic propagation of volcano infrasound is commonly assumed, but nonlinear processes such as wave steepening may distort waveforms and obscure the sourcing process in recorded waveforms. Here we use a previously developed frequency-domain nonlinearity indicator to quantify spectral changes due to nonlinear propagation primarily in 80 signals from explosions at Yasur Volcano, Vanuatu. We find evidence for $$\le$$ ≤ 10 −3  dB/m spectral energy transfer in the band 3–9 Hz for signals with amplitude on the order of several hundred Pa at 200–400 m range. The clarity of the nonlinear spectral signature increases with waveform amplitude, suggesting stronger nonlinear changes for greater source pressures. We observe similar results in application to synthetics generated through finite-difference wavefield simulations of nonlinear propagation, although limitations of the model complicate direct comparison to the observations. Our results provide quantitative evidence for nonlinear propagation that confirms previous interpretations made on the basis of qualitative observations of asymmetric waveforms.
    Free, publicly-accessible full text available April 1, 2023
  5. Free, publicly-accessible full text available March 1, 2023
  6. Summary Infrasound sensors are deployed in a variety of spatial configurations and scales for geophysical monitoring, including networks of single sensors and networks of multi-sensor infrasound arrays. Infrasound signal detection strategies exploiting these data commonly make use of inter-sensor correlation and coherence (array processing, multi-channel correlation); network-based tracking of signal features (e.g. reverse time migration); or a combination of these such as backazimuth cross-bearings for multiple arrays. Single-sensor trace-based denoising techniques offer significant potential to improve all of these various infrasound data processing strategies, but have not previously been investigated in detail. Single-sensor denoising represents a preprocessing step that could reduce the effects of ambient infrasound and wind noise in infrasound signal association and location workflows. We systematically investigate the utility of a range of single-sensor denoising methods for infrasound data processing, including noise gating, non-negative matrix factorisation, and data-adaptive Wiener filtering. For the data testbed, we use the relatively dense regional infrasound network in Alaska, which records a high rate of volcanic eruptions with signals varying in power, duration, and waveform and spectral character. We primarily use data from the 2016–2017 Bogoslof volcanic eruption, which included multiple explosions, and synthetics. The Bogoslof volcanic sequence provides an opportunity to investigatemore »regional infrasound detection, association, and location for a set of real sources with varying source spectra subject to anisotropic atmospheric propagation and varying noise levels (both incoherent wind noise and coherent ambient infrasound, primarily microbaroms). We illustrate the advantages and disadvantages of the different denoising methods in categories such as event detection, waveform distortion, the need for manual data labelling, and computational cost. For all approaches, denoising generally performs better for signals with higher SNR and with less spectral and temporal overlap between signals and noise. Microbaroms are the most globally pervasive and repetitive coherent ambient infrasound noise source, with such noise often referred to as clutter or interference. We find that denoising offers significant potential for microbarom clutter reduction. Single-channel denoising of microbaroms prior to standard array processing enhances both the quantity and bandwidth of detectable volcanic events. We find that reduction of incoherent wind noise is more challenging using the denoising methods we investigate; thus, station hardware (wind noise reduction systems) and site selection remain critical and cannot be replaced by currently available digital denoising methodologies. Overall, we find that adding single-channel denoising as a component in the processing workflow can benefit a variety of infrasound signal detection, association, and location schemes. The denoising methods can also isolate the noise itself, with utility in statistically characterizing ambient infrasound noise.« less
    Free, publicly-accessible full text available January 1, 2023
  7. Summary Yasur volcano, Vanuatu is a continuously active open-vent basaltic-andesite stratocone with persistent and long-lived eruptive activity. We present results from a seismo-acoustic field experiment at Yasur, providing locally dense broadband seismic and infrasonic network coverage from 27 July to 3 August 2016. We corroborate our seismo-acoustic observations with coincident video data from cameras deployed at the crater and on an unoccupied aircraft system (UAS). The waveforms contain a profusion of signals reflecting Yasur’s rapidly occurring and persistent explosive activity. The typical infrasonic signature of Yasur explosions is a classic short-duration and often asymmetric explosion waveform characterized by a sharp compressive onset and wideband frequency content. The dominant seismic signals are numerous repetitive very-long-period (VLP) signals with periods of ∼2 to 10 sec. The VLP seismic events are “high-rate”, reoccurring near-continuously throughout the dataset with short interevent times (∼20 to 60 sec). We observe variability in the synchronization of seismic VLP and acoustic sources. Explosion events clearly delineated by infrasonic waveforms are underlain by seismic VLPs. However, strong seismic VLPs also occur with only a weak infrasonic expression. Multiplet analysis of the seismic VLPs reveals a systematic progression in the seismo-acoustic source decoupling. The same dominant seismic VLP multiplet occurs with andmore »without surficial explosions and infrasound, and these transitions occur over a time-scale of a few days during our field campaign. We subsequently employ template matching, stacking, and full-waveform inversion to image the source mechanism of the dominant VLP multiplet. Inversion of the dominant VLP multiplet stack points to a composite source consisting of either a dual-crack (plus forces) or pipe-crack (plus forces) mechanism. The derived mechanisms correspond to a point-source directly beneath the summit vents with centroid depths in the range ∼900–1,000 m below topography. All mechanisms suggest a northeast trending crack dipping relatively shallowly to the northwest and indicate a VLP source centroid and mechanism controlled by a stable structural geologic feature beneath Yasur. We interpret the results in the framework of gas slug ascent through the conduit responsible for Yasur explosions. The VLP mechanism and timing with infrasound (when present) are explained by a shallow-buffered top-down model in which slug ascent is relatively aseismic until reaching the base of a shallow section. Slug disruption in this shallow zone triggers a pressure disturbance that propagates downward and couples at the conduit base (VLP centroid). If the shallow section is open, an explosion propagates to the surface, producing infrasound. In the case of (the same multiplet) VLPs occurring without surficial explosions and weak or no infrasound, the decoupling of the dominant VLPs at ∼900–1,000 m depth from surficial explosions and infrasound strongly indicates buffering of the terminal slug ascent. This buffering could be achieved by a variety of conditions at or directly beneath the vents, such as a high-viscosity layer of crystal-rich magma, a debris cap from backfill, a foam layer, or a combination of these. The dominant VLP at Yasur captured by our experiment has a source depth and mechanism separated from surface processes and is stable over time.« less
    Free, publicly-accessible full text available January 1, 2023
  8. Free, publicly-accessible full text available January 1, 2023
  9. Free, publicly-accessible full text available January 1, 2023
  10. Free, publicly-accessible full text available December 1, 2022