Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The 2018 eruption of Sierra Negra volcano, Galápagos, Ecuador has provided new insights into the mechanisms of caldera resurgence, subsidence, and fissuring at basaltic shield volcanoes. Here, we integrate local (∼0.4 km) seismo‐acoustic records and regional (∼85 km) infrasound array data to present new observations of the 2018 Sierra Negra eruption with improved time and spatial resolutions. These observations include: air‐to‐ground coupling ∼2 hr before the time of the eruption onset, migration of the infrasound tremor from 22:54 June 26 to 12:31 June 27 UT (all times in UT), and persistent infrasound detections during the weeks between 5 July and 18 August from an area that does not coincide with the previously documented eruptive fissures. We interpret air‐to‐ground coupling as infrasound tremor generated in the nearby fissures before the main eruptive phase started, although ambiguity remains in interpreting a single seismic‐infrasonic sensor pair. The progressive location change of the infrasound tremor agrees with the migration of the eruption down the north flank of Sierra Negra at a rate of ∼0.15 ± 0.04 m/s. The weeks‐long persistent detections coincide with a region that has thermal anomalies, co‐eruptive deformation, lava fields, and geological features that could be interpreted as multiple lava tube skylights. Our observations and interpretations provide constraints on the mechanisms underlying fissure formation and magma emplacement at Sierra Negra.more » « lessFree, publicly-accessible full text available October 1, 2025
-
SUMMARY Powerful infrasound (acoustic waves $$\lt $$20 Hz) can be produced by explosive volcanic eruptions. The long-range propagation capability, over hundreds to thousands of kilometers, of atmospheric infrasound motivates the development of regional or even global scale volcano-infrasound monitoring systems. Infrasound propagation paths are subject to spatiotemporal atmospheric dynamics, which lead to deviations in the direction-of-arrival (back-azimuth) observed at sensor arrays and contribute to source location uncertainty. Here, we further investigate the utility of empirical climatologies combined with 3-D ray tracing for providing first-order estimates of infrasound propagation paths and back-azimuth deviation corrections. The intended application is in scenarios requiring rapid or pre-computed infrasound propagation calculations, such as for a volcano-infrasound monitoring system. Empirical climatologies are global observationally based function fitting models of the atmosphere, representing robust predictors of the bulk diurnal to seasonal atmospheric variability. Infrasound propagation characteristics have previously been shown to have strong seasonal and diurnal components. At the International Monitoring System infrasound station IS22, New Caledonia, quasi-continuous multiyear infrasound array detections show oscillating azimuthal variations for arrivals from volcanoes in Vanuatu, including Yasur ($$\sim$$400 km range), Ambrym ($$\sim$$670 km range) and Lopevi ($$\sim$$650 km range). We perform 3-D ray tracing to model infrasound propagation from the Ambrym and Yasur volcano locations to IS22 every six hours (00:00, 06:00, 12:00 and 18:00 UTC) for every day of 2004 and 2019 for Ambrym and Yasur, respectively and evaluate the results as compared to the multiyear observations. We assess a variety of models and parametrizations, including both empirical climatologies and hybrid descriptions; range-independent and range-dependent atmospheric discretizations; and unperturbed and perturbed range-independent empirical climatologies. The hybrid atmospheric descriptions are composed of fifth generation reanalysis descriptions (ERA 5) from the European Centre for Medium-Range Weather Forecasts below $$\sim$$80 km altitude combined with empirical climatologies above. We propose and employ simple parametric perturbations to the empirical climatologies, which are designed to enhance the stratospheric duct and compensate for missing gravity wave perturbations not included in the climatologies, and thereby better match observations. We build year-long back-azimuth deviation interpolations from the simulations and compare them with three different multiyear array detection data sets from IS22 covering from 2003 up to 2022. Through a systematic comparison, we find that the range-independent empirical climatologies can capture bulk azimuth deviation variability and could thus be useful for rapid infrasound propagation calculation scenarios, particularly during favourable sustained propagation ducting conditions. We show that the hybrid models better describe infrasound propagation during periods of weak stratospheric ducting and during transient atmospheric changes such as stratospheric wind reversals. Overall, our results support the notion that climatologies, if perturbed to compensate for missing gravity wave structure, can improve rapid low-latency and pre-computed infrasound source discrimination and location procedures.more » « less
-
Abstract Popocatépetl is a highly active stratovolcano in central Mexico with recurrent activity of Vulcanian-type explosions and frequent degassing. The proximity of Popocatépetl volcano to Mexico City, one of the most populated cities in the world, demands continuous monitoring to achieve an adequate volcano risk assessment. We present an overview of the first high-dynamic-range and high-broadband (0.01–200 Hz; 400 Hz sampling rate) seismoacoustic network (PoPiNet), which we operated around Popocatépetl volcano from August 2021 to May 2022. Here, we show preliminary results of the explosions recorded in September 2021. We deployed five seismoacoustic stations within 4–25 km horizontal distance (range) from the vent. We identify infrasonic waveforms associated with tremor and explosions, with pressures ranging from 16 to 134 Pa and dominant frequencies between 0.2 and 5.0 Hz. The frequency content of the recorded signals at the closest stations to the volcano spans the sub-bass (20–60 Hz) and bass (60–250 Hz) ranges. The associated seismic signals of moderate explosions exhibit air-to-ground coupled waves with maximum coherence values at frequencies up to 5 and 25 Hz for the farthest and closest stations to the volcano, respectively. Conversely, we observe infrasound signal amplitudes from relatively small explosions reaching maximum pressures of 10 Pa that do not couple into the ground, even at the closest stations. These infrasound signals are associated with type-I long-period events as reported in previous investigations. The waveform consistency suggests repetitive and nondestructive sources beneath the volcano.more » « lessFree, publicly-accessible full text available July 17, 2025
-
Abstract We present the transverse coherence minimization method (TCM)—an approach to estimate the back-azimuth of infrasound signals that are recorded on an infrasound microphone and a colocated three-component seismometer. Accurate back-azimuth information is important for a variety of monitoring efforts, but it is currently only available for infrasound arrays and for seismoacoustic sensor pairs separated by 10 s of meters. Our TCM method allows for the analysis of colocated sensor pairs, sensors located within a few meters of each other, which may extend the capabilities of existing seismoacoustic networks and supplement operating infrasound arrays. This approach minimizes the coherence of the transverse component of seismic displacement with the infrasound wave to estimate the infrasound back-azimuth. After developing an analytical model, we investigate seismoacoustic signals from the August 2012 Humming Roadrunner experiment and the 26 May 2021 eruption of Great Sitkin Volcano, Alaska, U.S.A., at the ranges of 6.5–185 km from the source. We discuss back-azimuth estimates and potential sources of deviation (1°–15°), such as local terrain effects or deviation from common analytical models. This practical method complements existing seismoacoustic tools and may be suitable for routine application to signals of interest.more » « less
-
Abstract Infrasound (low frequency sound waves) can be used to monitor and characterize volcanic eruptions. However, infrasound sensors are usually placed on the ground, thus providing a limited sampling of the acoustic radiation pattern that can bias source size estimates. We present observations of explosive eruptions from a novel uncrewed aircraft system (UAS)‐based infrasound sensor platform that was strategically hovered near the active vents of Stromboli volcano, Italy. We captured eruption infrasound from short‐duration explosions and jetting events. While potential vertical directionality was inconclusive for the short‐duration explosion, we find that jetting events exhibit vertical sound directionality that was observed with a UAS close to vertical. This directionality would not have been observed using only traditional deployments of ground‐based infrasound sensors, but is consistent with jet noise theory. This proof‐of‐concept study provides unique information that can improve our ability to characterize and quantify the directionality of volcanic eruptions and their associated hazards.more » « less
-
Abstract Blasting experiments were performed that investigate multiple explosions that occur in quick succession in unconsolidated ground and their effects on host material and atmosphere. Such processes are known to occur during phreatomagmatic eruptions at various depths, lateral locations, and energies. The experiments follow a multi‐instrument approach in order to observe phenomena in the atmosphere and in the ground, and measure the respective energy partitioning. The experiments show significant coupling of atmospheric (acoustic)‐ and ground (seismic) signal over a large range of (scaled) distances (30–330 m, 1–10 m J−1/3). The distribution of ejected material strongly depends on the sequence of how the explosions occur. The overall crater sizes are in the expected range of a maximum size for many explosions and a minimum for one explosion at a given lateral location. As previous research showed before, peak atmospheric over‐pressure decays exponentially with scaled depth. An exponential decay rate ofwas measured. At a scaled explosion depth of 4 × 10−3 m J−1/3ca. 1% of the blast energy is responsible for the formation of the atmospheric pressure pulse; at a more shallow scaled depth of 2.75 × 10−3 m J−1/3this ratio lies at ca. 5.5%–7.5%. A first order consideration of seismic energy estimates the sum of radiated airborne and seismic energy to be up to 20% of blast energy. Finally, the transient cavity formation during a blast leads to an effectively reduced explosion depth that was determined. Depth reductions of up to 65% were measured.more » « less
-
Abstract The International Monitoring System (IMS) infrasound network has been established to detect nuclear explosions and other signals of interest embedded in the station‐specific ambient noise. The ambient noise can be separated into coherent infrasound (e.g., real infrasonic signals) and incoherent noise (such as that caused by wind turbulence). Previous work statistically and systematically characterized coherent infrasound recorded by the IMS. This paper expands on this analysis of the coherent ambient infrasound by including updated IMS data sets with data up to the end of 2020 for all 53 of the currently certified IMS infrasound stations using an updated configuration of the Progressive Multi‐Channel Correlation (PMCC) method. This paper presents monthly station‐dependent reference curves for the back azimuth, trace velocity, and root mean squared amplitude, which provides a means to determine the deviation from the nominal monthly behavior. In addition, a daily Ambient Noise Stationarity (ANS) factor based on deviations from the reference curves is determined for a quick reference to the coherent signal quality compared to the nominal situations. Newly presented histograms provide a higher resolution spectrum, including the observations of the microbarom peak, as well as additional peaks reflecting station‐dependent environmental noise. The aim of these reference curves is to identify periods of suboptimal operation (e.g., nonoperational sensor) or instances of strong abnormal signals of interest.more » « less
-
Abstract A high‐sensitivity pressure sensor was deployed as part of the Mars Interior Exploration using Seismic Investigations, Geodesy and Heat Transport lander on Elysium Planitia in November 2018. We use pressure records from 1 October to 31 December 2019 (Sol 301–389) for frequencies between 0.1 and 0.5 Hz to infer relative sound‐speed changes in the Martian atmosphere using the autocorrelation infrasound interferometry method. We find that relative sound‐speed changes are up to ±15%, follow a similar pattern to Martian‐daily variations of atmospheric temperature and horizontal wind velocity, and are similar to those inferred from in‐situ observations and Martian climatology. The relative sound‐speed changes and horizontal wind speed variations are synchronous, while temperature peaks ∼1.88 hr after these time series. The strong and continuous emergence of coherent phases in the autocorrelation codas suggests the presence of continuous infrasound on Mars.more » « less
-
Abstract Mount Michael stratovolcano, South Sandwich Islands is extremely remote and challenging to observe, but eruptive activity has been sporadically observed since 1820 and captured by satellite methods since 1989. We identify long‐range infrasound signals recorded by the International Monitoring System attributable to episodes of persistent eruptive activity at Mount Michael. Analysis of multi‐year (2004–2020) infrasound array data at station IS27, Antarctica (range 1,672 km) reveals candidate signals especially from May 2005 to January 2008 and from May 2016 to April 2018. By combining ray‐tracing with empirical climatologies and atmospheric specifications, we show that systematic variations in the observed backazimuth of the signals (at IS27) are broadly consistent with annual variability in stratospheric propagation conditions for a source at Mount Michael. Observed signal amplitudes combined with transmission loss estimates are consistent with moderate explosive eruption. We highlight a selection of infrasound signals that correspond to satellite observation of eruptions.more » « less
-
Abstract Volcanic eruption source parameters may be estimated from acoustic pressure recordings dominant at infrasonic frequencies (< 20 Hz), yet uncertainties may be high due in part to poorly understood propagation dynamics. Linear acoustic propagation of volcano infrasound is commonly assumed, but nonlinear processes such as wave steepening may distort waveforms and obscure the sourcing process in recorded waveforms. Here we use a previously developed frequency-domain nonlinearity indicator to quantify spectral changes due to nonlinear propagation primarily in 80 signals from explosions at Yasur Volcano, Vanuatu. We find evidence for$$\le$$ 10−3 dB/m spectral energy transfer in the band 3–9 Hz for signals with amplitude on the order of several hundred Pa at 200–400 m range. The clarity of the nonlinear spectral signature increases with waveform amplitude, suggesting stronger nonlinear changes for greater source pressures. We observe similar results in application to synthetics generated through finite-difference wavefield simulations of nonlinear propagation, although limitations of the model complicate direct comparison to the observations. Our results provide quantitative evidence for nonlinear propagation that confirms previous interpretations made on the basis of qualitative observations of asymmetric waveforms.more » « less