skip to main content


Search for: All records

Award ID contains: 1847794

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 1, 2025
  2. Large-scale language datasets and advances in natural language processing offer opportunities for studying people’s cognitions and behaviors. We show how representations derived from language can be combined with laboratory-based word norms to predict implicit attitudes for diverse concepts. Our approach achieves substantially higher correlations than existing methods. We also show that our approach is more predictive of implicit attitudes than are explicit attitudes, and that it captures variance in implicit attitudes that is largely unexplained by explicit attitudes. Overall, our results shed light on how implicit attitudes can be measured by combining standard psychological data with large-scale language data. In doing so, we pave the way for highly accurate computational modeling of what people think and feel about the world around them.

     
    more » « less
  3. A wide body of empirical research has revealed the descriptive shortcomings of expected value and expected utility models of risky decision making. In response, numerous models have been advanced to predict and explain people’s choices between gambles. Although some of these models have had a great impact in the behavioral, social, and management sciences, there is little consensus about which model offers the best account of choice behavior. In this paper, we conduct a large-scale comparison of 58 prominent models of risky choice, using 19 existing behavioral data sets involving more than 800 participants. This allows us to comprehensively evaluate models in terms of individual-level predictive performance across a range of different choice settings. We also identify the psychological mechanisms that lead to superior predictive performance and the properties of choice stimuli that favor certain types of models over others. Moreover, drawing on research on the wisdom of crowds, we argue that each of the existing models can be seen as an expert that provides unique forecasts in choice predictions. Consistent with this claim, we find that crowds of risky choice models perform better than individual models and thus provide a performance bound for assessing the historical accumulation of knowledge in our field. Our results suggest that each model captures unique aspects of the decision process and that existing risky choice models offer complementary rather than competing accounts of behavior. We discuss the implications of our results on theories of risky decision making and the quantitative modeling of choice behavior. This paper was accepted by Yuval Rottenstreich, behavioral economics and decision analysis. 
    more » « less
  4. Choice context influences decision processes and is one of the primary determinants of what people choose. This insight has been used by academics and practitioners to study decision biases and to design behavioral interventions to influence and improve choices. We analyzed the effects of context-based behavioral interventions on the computational mechanisms underlying decision-making. We collected data from two large laboratory studies involving 19 prominent behavioral interventions, and we modeled the influence of each intervention using a leading computational model of choice in psychology and neuroscience. This allowed us to parametrize the biases induced by each intervention, to interpret these biases in terms of underlying decision mechanisms and their properties, to quantify similarities between interventions, and to predict how different interventions alter key choice outcomes. In doing so, we offer researchers and practitioners a theoretically principled approach to understanding and manipulating choice context in decision-making. 
    more » « less
  5. Deep-learning methods can extract high-dimensional feature vectors for objects, concepts, images, and texts from large-scale digital data sets. These vectors are proxies for the mental representations that people use in everyday cognition and behavior. For this reason, they can serve as inputs into computational models of cognition, giving these models the ability to process and respond to naturalistic prompts. Over the past few years, researchers have applied this approach to topics such as similarity judgment, memory search, categorization, decision making, and conceptual knowledge. In this article, we summarize these applications, identify underlying trends, and outline directions for future research on the computational modeling of naturalistic cognition and behavior.

     
    more » « less