Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Interfacing cold atoms with integrated nanophotonic devices could offer new paradigms for engineering atom-light interactions and provide a potentially scalable route for quantum sensing, metrology, and quantum information processing. However, it remains a challenging task to efficiently trap a large ensemble of cold atoms on an integrated nanophotonic circuit. Here, we demonstrate direct loading of an ensemble of up to 70 atoms into an optical microtrap on a nanophotonic microring circuit. Efficient trap loading is achieved by employing degenerate Raman-sideband cooling in the microtrap, where a built-in spin-motion coupling arises directly from the vector light shift of the evanescent-field potential on a microring. Atoms are cooled into the trap via optical pumping with a single free space beam. We have achieved a trap lifetime approaching 700 ms under continuous cooling. We show that the trapped atoms display large cooperative coupling and superradiant decay into a whispering-gallery mode of the microring resonator, holding promise for explorations of new collective effects. Our technique can be extended to trapping a large ensemble of cold atoms on nanophotonic circuits for various quantum applications.more » « less
An official website of the United States government
